流形学习算法的总结

       因为线性降维算法在降维后不能很好保持复杂结构高维数据的完整信息,因此产生对非线性降维的需求,也就有从数学拓扑中出发的流形映射,这是由于大部分现实中非线性结构均可以看作是流形结构,固然也有不是流形结构的几何体,好比两条相交的直线的交叉点,并且因为流形的定义就是和欧式空间存在一个同胚映射(映射和逆映射都是连续映射),同胚映射能够很好保留流形的几何性质。,只要把对应的映射构造出来,就能够把
相关文章
相关标签/搜索