JavaShuo
栏目
标签
QANet: Combining Local Convolution With Global Self-Attention For Reading Comprehension
时间 2020-12-27
原文
原文链接
文章目录 1.概述 2.模型结构 2.1.Input embedding layer 2.2 Embedding Encoder Layer 2.3.Context-Query Attention Layer 2.4.Model Encoder Layer 2.5 Output layer 3.数据增强 4.源码及训练 参考文献 博主标记版paper下载地址:zsweet github 关于pap
>>阅读原文<<
相关文章
1.
QANET: COMBINING LOCAL CONVOLUTION WITH GLOBAL SELF-ATTENTION FOR READING COMPREHENSION
2.
【论文笔记】QANET:Combining Local Convolution With Global Self-attention for Reading Comprehension
3.
机器阅读理解系列文章-QANet(Combining Local Convolution with Global Self-Attention for Reading Comprehension)
4.
Attention-over-Attention Neural Networks for Reading Comprehension 讯飞
5.
r-net:machine reading comprehension with self-matching networks
6.
Cosmos QA:Machine reading comprehension with contextual commonsense reasoning
7.
An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global
8.
【论文笔记】QANet模型
9.
QANet 论文笔记
10.
Document Modeling with Graph Attention Networks for Multi-grained Machine Reading Comprehension
更多相关文章...
•
Lua for 循环
-
Lua 教程
•
Swift for 循环
-
Swift 教程
•
RxJava操作符(四)Combining
•
Composer 安装与使用
相关标签/搜索
comprehension
convolution
combining
reading
local
global
unset+global
mode&global
with+this
with...connect
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
NLP《词汇表示方法(六)ELMO》
2.
必看!RDS 数据库入门一本通(附网盘链接)
3.
阿里云1C2G虚拟机【99/年】羊毛党集合啦!
4.
10秒钟的Cat 6A网线认证仪_DSX2-5000 CH
5.
074《从零开始学Python网络爬虫》小记
6.
实例12--会动的地图
7.
听荐 | 「谈笑风声」,一次投资圈的尝试
8.
阿里技术官手写800多页PDF总结《精通Java Web整合开发》
9.
设计模式之☞状态模式实战
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
QANET: COMBINING LOCAL CONVOLUTION WITH GLOBAL SELF-ATTENTION FOR READING COMPREHENSION
2.
【论文笔记】QANET:Combining Local Convolution With Global Self-attention for Reading Comprehension
3.
机器阅读理解系列文章-QANet(Combining Local Convolution with Global Self-Attention for Reading Comprehension)
4.
Attention-over-Attention Neural Networks for Reading Comprehension 讯飞
5.
r-net:machine reading comprehension with self-matching networks
6.
Cosmos QA:Machine reading comprehension with contextual commonsense reasoning
7.
An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining Global
8.
【论文笔记】QANet模型
9.
QANet 论文笔记
10.
Document Modeling with Graph Attention Networks for Multi-grained Machine Reading Comprehension
>>更多相关文章<<