\[此篇文章介绍关于SVM中的一些不懂的地方的公式推导,以及代码实现和一些SVM问题,经过作题检验掌握的效果。\]python
\[调用sklearn包,进行SVM分类\]算法
#!/usr/bin/python # -*- coding utf-8 -*- import numpy as np import matplotlib.pyplot as plt import pandas as pd import matplotlib as mpl from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score def load_data(): path = 'E:\数据挖掘\Machine learning\[小象学院]机器学习课件\8.Regression代码\8.Regression\iris.data' # 读取文件路径 data = pd.read_csv(path, header = None) # 从data 读取数据, x为前4列的全部数据, y为第5列数据 x, y = data[range(4)], data[4] # 返回字符类别的位置索引, 因y数组包含三类, 对应返回下标值 y = pd.Categorical(y).codes # 取x的前两列数据, 通常SVM只作二特征分类, 多特征的转化为多个二特征分类再bagging? x = x[[0, 1]] # x = x[[0 ,2]] return x, y def classifier(x,y): # 鸢尾花包含四个特征属性, 包含三类标签, 山鸢尾(0), 变色鸢尾(1), 维吉尼亚鸢尾(2) iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度' # 按 0.6 的比例,test_data 占40%, train_data 占60%, random_state随机数的种子, 1为产生相同随机数, 产生不一样随机数 x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6) # 使用SVM进行分类训练, 包含关键字, C, gamma, kernel # kernel='linear'时,为线性核,C越大分类效果越好, kernel= 'rbf' 时(default), 为高斯核 # gamma值越小,分类界面越连续;gamma值越大,分类界面越“散”,分类效果越好 # decision_function_shape = 'ovr' 时,为one vs rest, 即一个类别与其余类别进行划分,decision_function_shape = 'ovo' # 为one vs one,即将类别两两之间进行划分,用二分类的方法模拟多分类的结果 clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr') clf.fit(x_train, y_train.ravel()) # score函数返回返回该次预测的系数R2, 在(0, 1)之间、accuracy_score指的是分类准确率,即分类正确占全部分类的百分比 # recall_score 召回率 = 提取出的正确信息条数 / 样本中的信息条数 print(clf.score(x_train, y_train)) print('训练集准确率:', accuracy_score(y_train, clf.predict(x_train))) print(clf.score(x_test, y_test)) print('测试集准确率:', accuracy_score(y_test, clf.predict(x_test))) # decision_function()的功能: 计算样本点到分割超平面的函数距离, 每一列的值表明距离各种别的距离 print('decision_function:\n', clf.decision_function(x_train)) print('\npredict:\n', clf.predict(x_train)) # 画图 x1_min, x2_min = x.min() # 第0列的范围 x1_max, x2_max = x.max() # 第1列的范围 x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j] # 生成网格采样点 grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点 # print 'grid_test = \n', grid_test # Z = clf.decision_function(grid_test) # 样本到决策面的距离 # print Z grid_hat = clf.predict(grid_test) # 预测分类值 grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同 mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF']) cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b']) plt.figure(facecolor='w') plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light) plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本 plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中测试集样本 plt.xlabel(iris_feature[0], fontsize=13) plt.ylabel(iris_feature[1], fontsize=13) plt.xlim(x1_min, x1_max) plt.ylim(x2_min, x2_max) plt.title(u'鸢尾花SVM二特征分类', fontsize=16) plt.grid(b=True, ls=':') plt.tight_layout(pad=1.5) plt.show() if __name__ == "__main__": x, y = load_data() classifier(x, y)
\[SMO算法\]数组
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt def loadDataSet(fileName): # 数据矩阵 dataMat = [] # 标签向量 labelMat = [] # 打开文件 fr = open(fileName) # 逐行读取 for line in fr.readlines(): # 去掉每一行首尾的空白符,例如'\n','\r','\t',' ' # 将每一行内容根据'\t'符进行切片 lineArr = line.strip().split('\t') # 添加数据(100个元素排成一行) dataMat.append([float(lineArr[0]), float(lineArr[1])]) # 添加标签(100个元素排成一行) labelMat.append(float(lineArr[2])) return dataMat, labelMat def selectJrand(i, m): # i为第一个alpha的下标,m是全部alpha的数目 j = i while (j == i): # uniform()方法将随机生成一个实数,它在[x, y)范围内 j = int(np.random.uniform(0, m)) return j def clipAlpha(aj, H, L): if aj > H: aj = H if L > aj: aj = L return aj def smoSimple(dataMatIn, classLabels, C, toler, maxIter): # 转换为numpy的mat矩阵存储(100,2) dataMatrix = np.mat(dataMatIn) # 转换为numpy的mat矩阵存储并转置(100,1) labelMat = np.mat(classLabels).transpose() # 初始化b参数,统计dataMatrix的维度,m:行;n:列 b = 0 # 统计dataMatrix的维度,m:100行;n:2列 m, n = np.shape(dataMatrix) # 初始化alpha参数,设为0 alphas = np.mat(np.zeros((m, 1))) # 初始化迭代次数 iter_num = 0 # 最多迭代maxIter次 while (iter_num < maxIter): alphaPairsChanged = 0 for i in range(m): # 步骤1:计算偏差Ei # multiply(a,b)就是个乘法,若是a,b是两个数组,那么对应元素相乘 # .T为转置 fxi = float(np.multiply(alphas, labelMat).T * (dataMatrix * dataMatrix[i, :].T)) + b # 偏差项计算公式 Ei = fxi - float(labelMat[i]) # 优化alpha,设定必定的容错率 if ((labelMat[i] * Ei < -toler) and (alphas[i] < C)) or ((labelMat[i] * Ei > toler) and (alphas[i] > 0)): # 随机选择另外一个alpha_i成对比优化的alpha_j j = selectJrand(i, m) # 步骤1,计算偏差Ej fxj = float(np.multiply(alphas, labelMat).T * (dataMatrix * dataMatrix[j, :].T)) + b # 偏差项计算公式 Ej = fxj - float(labelMat[j]) # 保存更新前的alpha值,使用深拷贝(彻底拷贝)A深层拷贝为B,A和B是两个独立的个体 alphaIold = alphas[i].copy() alphaJold = alphas[j].copy() # 步骤2:计算上下界H和L if (labelMat[i] != labelMat[j]): L = max(0, alphas[j] - alphas[i]) H = min(C, C + alphas[j] - alphas[i]) else: L = max(0, alphas[j] + alphas[i] - C) H = min(C, alphas[j] + alphas[i]) if (L == H): print("L == H") continue # 步骤3:计算eta eta = 2.0 * dataMatrix[i, :] * dataMatrix[j, :].T - dataMatrix[i, :] * dataMatrix[i, :].T - dataMatrix[ j, :] * dataMatrix[ j, :].T if eta >= 0: print("eta>=0") continue # 步骤4:更新alpha_j alphas[j] -= labelMat[j] * (Ei - Ej) / eta # 步骤5:修剪alpha_j alphas[j] = clipAlpha(alphas[j], H, L) if (abs(alphas[j] - alphaJold) < 0.00001): print("alpha_j变化过小") continue # 步骤6:更新alpha_i alphas[i] += labelMat[j] * labelMat[i] * (alphaJold - alphas[j]) # 步骤7:更新b_1和b_2 b1 = b - Ei - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i, :] * dataMatrix[i, :].T - labelMat[ j] * (alphas[j] - alphaJold) * dataMatrix[j, :] * dataMatrix[i, :].T b2 = b - Ej - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i, :] * dataMatrix[j, :].T - labelMat[ j] * (alphas[j] - alphaJold) * dataMatrix[j, :] * dataMatrix[j, :].T # 步骤8:根据b_1和b_2更新b if (0 < alphas[i] < C): b = b1 elif (0 < alphas[j] < C): b = b2 else: b = (b1 + b2) / 2.0 # 统计优化次数 alphaPairsChanged += 1 # 打印统计信息 print("第%d次迭代 样本:%d, alpha优化次数:%d" % (iter_num, i, alphaPairsChanged)) # 更新迭代次数 if (alphaPairsChanged == 0): iter_num += 1 else: iter_num = 0 print("迭代次数:%d" % iter_num) return b, alphas def get_w(dataMat, labelMat, alphas): alphas, dataMat, labelMat = np.array(alphas), np.array(dataMat), np.array(labelMat) # 咱们不知道labelMat的shape属性是多少, # 可是想让labelMat变成只有一列,行数不知道多少, # 经过labelMat.reshape(1, -1),Numpy自动计算出有100行, # 新的数组shape属性为(100, 1) # np.tile(labelMat.reshape(1, -1).T, (1, 2))将labelMat扩展为两列(将第1列复制获得第2列) # dot()函数是矩阵乘,而*则表示逐个元素相乘 # w = sum(alpha_i * yi * xi) w = np.dot((np.tile(labelMat.reshape(1, -1).T, (1, 2)) * dataMat).T, alphas) return w.tolist() def showClassifer(dataMat, w, b): # 正样本 data_plus = [] # 负样本 data_minus = [] for i in range(len(dataMat)): if labelMat[i] > 0: data_plus.append(dataMat[i]) else: data_minus.append(dataMat[i]) # 转换为numpy矩阵 data_plus_np = np.array(data_plus) # 转换为numpy矩阵 data_minus_np = np.array(data_minus) # 正样本散点图(scatter) # transpose转置 plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1], s=30, alpha=0.7) # 负样本散点图(scatter) plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1], s=30, alpha=0.7) # 绘制直线 x1 = max(dataMat)[0] x2 = min(dataMat)[0] a1, a2 = w b = float(b) a1 = float(a1[0]) a2 = float(a2[0]) y1, y2 = (-b - a1 * x1) / a2, (-b - a1 * x2) / a2 plt.plot([x1, x2], [y1, y2]) # 找出支持向量点 # enumerate在字典上是枚举、列举的意思 for i, alpha in enumerate(alphas): # 支持向量机的点 if (abs(alpha) > 0): x, y = dataMat[i] plt.scatter([x], [y], s=150, c='none', alpha=0.7, linewidth=1.5, edgecolors='red') plt.show() if __name__ == '__main__': dataMat, labelMat = loadDataSet('E:\\数据挖掘\\Machine learning\\代码\\SVM_Project1\\testSet.txt') b, alphas = smoSimple(dataMat, labelMat, 0.6, 0.001, 40) w = get_w(dataMat, labelMat, alphas) showClassifer(dataMat, w, b)
\[核函数测试\]缓存
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np import random class optStruct: def __init__(self, dataMatIn, classLabels, C, toler, kTup): # 数据矩阵 self.X = dataMatIn # 数据标签 self.labelMat = classLabels # 松弛变量 self.C = C # 容错率 self.tol = toler # 矩阵的行数 self.m = np.shape(dataMatIn)[0] # 根据矩阵行数初始化alphas矩阵,一个m行1列的全零列向量 self.alphas = np.mat(np.zeros((self.m, 1))) # 初始化b参数为0 self.b = 0 # 根据矩阵行数初始化偏差缓存矩阵,第一列为是否有效标志位,第二列为实际的偏差E的值 self.eCache = np.mat(np.zeros((self.m, 2))) # 初始化核K self.K = np.mat(np.zeros((self.m, self.m))) # 计算全部数据的核K for i in range(self.m): self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup) def kernelTrans(X, A, kTup): # 读取X的行列数 m, n = np.shape(X) # K初始化为m行1列的零向量 K = np.mat(np.zeros((m, 1))) # 线性核函数只进行内积 if kTup[0] == 'lin': K = X * A.T # 高斯核函数,根据高斯核函数公式计算 elif kTup[0] == 'rbf': for j in range(m): deltaRow = X[j, :] - A K[j] = deltaRow * deltaRow.T K = np.exp(K / (-1 * kTup[1] ** 2)) else: raise NameError('核函数没法识别') return K def loadDataSet(fileName): # 数据矩阵 dataMat = [] # 标签向量 labelMat = [] # 打开文件 fr = open(fileName) # 逐行读取 for line in fr.readlines(): # 去掉每一行首尾的空白符,例如'\n','\r','\t',' ' # 将每一行内容根据'\t'符进行切片 lineArr = line.strip().split('\t') # 添加数据(100个元素排成一行) dataMat.append([float(lineArr[0]), float(lineArr[1])]) # 添加标签(100个元素排成一行) labelMat.append(float(lineArr[2])) return dataMat, labelMat def calcEk(oS, k): # multiply(a,b)就是个乘法,若是a,b是两个数组,那么对应元素相乘 # .T为转置 fXk = float(np.multiply(oS.alphas, oS.labelMat).T * oS.K[:, k] + oS.b) # 计算偏差项 Ek = fXk - float(oS.labelMat[k]) # 返回偏差项 return Ek def selectJrand(i, m): j = i while (j == i): # uniform()方法将随机生成一个实数,它在[x, y)范围内 j = int(random.uniform(0, m)) return j def selectJ(i, oS, Ei): # 初始化 maxK = -1 maxDeltaE = 0 Ej = 0 # 根据Ei更新偏差缓存 oS.eCache[i] = [1, Ei] # 对一个矩阵.A转换为Array类型 # 返回偏差不为0的数据的索引值 validEcacheList = np.nonzero(oS.eCache[:, 0].A)[0] # 有不为0的偏差 if (len(validEcacheList) > 1): # 遍历,找到最大的Ek for k in validEcacheList: # 不计算k==i节省时间 if k == i: continue # 计算Ek Ek = calcEk(oS, k) # 计算|Ei - Ek| deltaE = abs(Ei - Ek) # 找到maxDeltaE if (deltaE > maxDeltaE): maxK = k maxDeltaE = deltaE Ej = Ek # 返回maxK,Ej return maxK, Ej # 没有不为0的偏差 else: # 随机选择alpha_j的索引值 j = selectJrand(i, oS.m) # 计算Ej Ej = calcEk(oS, j) # 返回j,Ej return j, Ej def updateEk(oS, k): # 计算Ek Ek = calcEk(oS, k) # 更新偏差缓存 oS.eCache[k] = [1, Ek] def clipAlpha(aj, H, L): if aj > H: aj = H if L > aj: aj = L return aj def innerL(i, oS): # 步骤1:计算偏差Ei Ei = calcEk(oS, i) # 优化alpha,设定必定的容错率 if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ( (oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)): # 使用内循环启发方式2选择alpha_j,并计算Ej j, Ej = selectJ(i, oS, Ei) # 保存更新前的alpha值,使用深层拷贝 alphaIold = oS.alphas[i].copy() alphaJold = oS.alphas[j].copy() # 步骤2:计算上界H和下界L if (oS.labelMat[i] != oS.labelMat[j]): L = max(0, oS.alphas[j] - oS.alphas[i]) H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i]) else: L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C) H = min(oS.C, oS.alphas[j] + oS.alphas[i]) if L == H: print("L == H") return 0 # 步骤3:计算eta eta = 2.0 * oS.K[i, j] - oS.K[i, i] - oS.K[j, j] if eta >= 0: print("eta >= 0") return 0 # 步骤4:更新alpha_j oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta # 步骤5:修剪alpha_j oS.alphas[j] = clipAlpha(oS.alphas[j], H, L) # 更新Ej至偏差缓存 updateEk(oS, j) if (abs(oS.alphas[j] - alphaJold) < 0.00001): print("alpha_j变化过小") return 0 # 步骤6:更新alpha_i oS.alphas[i] += oS.labelMat[i] * oS.labelMat[j] * (alphaJold - oS.alphas[j]) # 更新Ei至偏差缓存 updateEk(oS, i) # 步骤7:更新b_1和b_2: b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, i] - oS.labelMat[j] * ( oS.alphas[j] - alphaJold) * oS.K[j, i] b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, j] - oS.labelMat[j] * ( oS.alphas[j] - alphaJold) * oS.K[j, j] # 步骤8:根据b_1和b_2更新b if (0 < oS.alphas[i] < oS.C): oS.b = b1 elif (0 < oS.alphas[j] < oS.C): oS.b = b2 else: oS.b = (b1 + b2) / 2.0 return 1 else: return 0 def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)): # 初始化数据结构 oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler, kTup) # 初始化当前迭代次数 iter = 0 entrieSet = True alphaPairsChanged = 0 # 遍历整个数据集alpha都没有更新或者超过最大迭代次数,则退出循环 while (iter < maxIter) and ((alphaPairsChanged > 0) or (entrieSet)): alphaPairsChanged = 0 # 遍历整个数据集 if entrieSet: for i in range(oS.m): # 使用优化的SMO算法 alphaPairsChanged += innerL(i, oS) print("全样本遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter, i, alphaPairsChanged)) iter += 1 # 遍历非边界值 else: # 遍历不在边界0和C的alpha nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] for i in nonBoundIs: alphaPairsChanged += innerL(i, oS) print("非边界遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter, i, alphaPairsChanged)) iter += 1 # 遍历一次后改成非边界遍历 if entrieSet: entrieSet = False # 若是alpha没有更新,计算全样本遍历 elif (alphaPairsChanged == 0): entrieSet = True print("迭代次数:%d" % iter) # 返回SMO算法计算的b和alphas return oS.b, oS.alphas def testRbf(k1=1.3): # 加载训练集 dataArr, labelArr = loadDataSet('E:\\数据挖掘\\Machine learning\\代码\\SVM_Project3\\testSetRBF.txt') # 根据训练集计算b, alphas b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 100, ('rbf', k1)) datMat = np.mat(dataArr) labelMat = np.mat(labelArr).transpose() # 得到支持向量 svInd = np.nonzero(alphas.A > 0)[0] sVs = datMat[svInd] labelSV = labelMat[svInd] print("支持向量个数:%d" % np.shape(sVs)[0]) m, n = np.shape(datMat) errorCount = 0 for i in range(m): # 计算各个点的核 kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1)) # 根据支持向量的点计算超平面,返回预测结果 predict = kernelEval.T * np.multiply(labelSV, alphas[svInd]) + b # 返回数组中各元素的正负号,用1和-1表示,并统计错误个数 if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1 # 打印错误率 print('训练集错误率:%.2f%%' % ((float(errorCount) / m) * 100)) # 加载测试集 dataArr, labelArr = loadDataSet('E:\\数据挖掘\\Machine learning\\代码\\SVM_Project3\\testSetRBF2.txt') errorCount = 0 datMat = np.mat(dataArr) labelMat = np.mat(labelArr).transpose() m, n = np.shape(datMat) for i in range(m): # 计算各个点的核 kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1)) # 根据支持向量的点计算超平面,返回预测结果 predict = kernelEval.T * np.multiply(labelSV, alphas[svInd]) + b # 返回数组中各元素的正负号,用1和-1表示,并统计错误个数 if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1 # 打印错误率 print('训练集错误率:%.2f%%' % ((float(errorCount) / m) * 100)) def showDataSet(dataMat, labelMat): # 正样本 data_plus = [] # 负样本 data_minus = [] for i in range(len(dataMat)): if labelMat[i] > 0: data_plus.append(dataMat[i]) else: data_minus.append(dataMat[i]) # 转换为numpy矩阵 data_plus_np = np.array(data_plus) # 转换为numpy矩阵 data_minus_np = np.array(data_minus) # 正样本散点图(scatter) # transpose转置 plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1]) # 负样本散点图(scatter) plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1]) # 显示 plt.show() if __name__ == '__main__': testRbf()
\(在样本空间中任意点x到超平面(w,b)的距离可写为:\)数据结构
\[ r = \frac{|w^Tx + b|}{||w||} \]app
\[推导以下:\\ 取x_0为任意点x在超平面y= w^Tx + b的投影\\ wx_0 +b = 0 \Longrightarrow |w\vec {xx_0}| = |w\vec r|= ||w||r \\ 另外一方面:|w\vec{xx_0}| = |w(x_0 -x)|=|-b-wx|=|b+wx|\\ \therefore r = \frac{|w^Tx + b|}{||w||}\]
\[ \hat r=yf(x)=y(w^Tx + b)\\ \tilde r = ry = y\frac{|w^Tx + b|}{||w||}=\frac {\hat r}{||w||}\\ \\定义\hat r为函数间隔,\tilde r为几何间隔 \]dom
\[ L(\boldsymbol{w}, b, \boldsymbol{\alpha})=\frac{1}{2}\|\boldsymbol{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right) \]机器学习
\[原问题为极小极大问题\min_{\boldsymbol{w,b}}\quad \max_{\boldsymbol{\alpha}}\quad L(w,b,\alpha)\\ 转化为极大极小问题\max_{\boldsymbol{\alpha}}\quad \min_{\boldsymbol{w,b}}\quad L(w,b,\alpha)\]函数
\[推导以下:\\ 目标函数:min\frac{1}{2}||w||^2\\ 约束条件:y_i(w^Tx_i + b) \geq 1\\ \therefore 对每一个在y_i(w^Tx_i+b)-1的i乘以\alpha_i\\ \therefore L(\boldsymbol{w}, b, \boldsymbol{\alpha})=\frac{1}{2}\|\boldsymbol{w}\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)\right)\]学习
\[在其余的机器学习上述公式是L(\boldsymbol{w}, b, \boldsymbol{\alpha})=\frac{1}{2}\|\boldsymbol{w}\|^{2}-\sum_{i=1}^{m} \alpha_{i}\left(y_{i}\left(\boldsymbol{w}^{\top} \boldsymbol{x}_{i}+b\right)-1\right),二者等价\]
\[ \begin{aligned} w &= \sum_{i=1}^m\alpha_iy_i\boldsymbol{x}_i \\ 0 &=\sum_{i=1}^m\alpha_iy_i \end{aligned} \]
\[推导以下:\\ \begin{aligned} L(\boldsymbol{w},b,\boldsymbol{\alpha}) &= \frac{1}{2}||\boldsymbol{w}||^2+\sum_{i=1}^m\alpha_i(1-y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b)) \\ & = \frac{1}{2}||\boldsymbol{w}||^2+\sum_{i=1}^m(\alpha_i-\alpha_iy_i \boldsymbol{w}^T\boldsymbol{x}_i-\alpha_iy_ib)\\ & =\frac{1}{2}\boldsymbol{w}^T\boldsymbol{w}+\sum_{i=1}^m\alpha_i -\sum_{i=1}^m\alpha_iy_i\boldsymbol{w}^T\boldsymbol{x}_i-\sum_{i=1}^m\alpha_iy_ib \end{aligned}\]
\[\frac {\partial L}{\partial \boldsymbol{w}}=\frac{1}{2}\times2\times\boldsymbol{w} + 0 - \sum_{i=1}^{m}\alpha_iy_i \boldsymbol{x}_i-0= 0 \Longrightarrow \boldsymbol{w}=\sum_{i=1}^{m}\alpha_iy_i \boldsymbol{x}_i\]
\[\frac {\partial L}{\partial b}=0+0-0-\sum_{i=1}^{m}\alpha_iy_i=0 \Longrightarrow \sum_{i=1}^{m}\alpha_iy_i=0\]
\[ \begin{aligned} \max_{\boldsymbol{\alpha}} & \sum_{i=1}^m\alpha_i - \frac{1}{2}\sum_{i = 1}^m\sum_{j=1}^m\alpha_i \alpha_j y_iy_j\boldsymbol{x}_i^T\boldsymbol{x}_j \\ s.t. & \sum_{i=1}^m \alpha_i y_i =0 \\ & \alpha_i \geq 0 \quad i=1,2,\dots ,m \end{aligned} \]
\(推导以下:\\计算拉格朗日函数,即将求得的两个公式代入\)
\[\begin{aligned} \min_{\boldsymbol{w},b} L(\boldsymbol{w},b,\boldsymbol{\alpha}) &=\frac{1}{2}\boldsymbol{w}^T\boldsymbol{w}+\sum_{i=1}^m\alpha_i -\sum_{i=1}^m\alpha_iy_i\boldsymbol{w}^T\boldsymbol{x}_i-\sum_{i=1}^m\alpha_iy_ib \\ &=\frac {1}{2}\boldsymbol{w}^T\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i-\boldsymbol{w}^T\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i+\sum _{i=1}^m\alpha_ i -b\sum _{i=1}^m\alpha_iy_i \\ & = -\frac {1}{2}\boldsymbol{w}^T\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i+\sum _{i=1}^m\alpha_i -b\sum _{i=1}^m\alpha_iy_i \end{aligned}\]
\[\begin{aligned} \min_{\boldsymbol{w},b} L(\boldsymbol{w},b,\boldsymbol{\alpha}) &= -\frac {1}{2}\boldsymbol{w}^T\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i+\sum _{i=1}^m\alpha_i \\ &=-\frac {1}{2}(\sum_{i=1}^{m}\alpha_iy_i\boldsymbol{x}_i)^T(\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i)+\sum _{i=1}^m\alpha_i \\ &=-\frac {1}{2}\sum_{i=1}^{m}\alpha_iy_i\boldsymbol{x}_i^T\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i+\sum _{i=1}^m\alpha_i \\ &=\sum _{i=1}^m\alpha_i-\frac {1}{2}\sum_{i=1 }^{m}\sum_{j=1}^{m}\alpha_i\alpha_jy_iy_j\boldsymbol{x}_i^T\boldsymbol{x}_j \end{aligned}\]
\[ \begin{aligned} & \min_{\boldsymbol{\alpha}}\frac{1}{2}\sum_{i = 1}^m\sum_{j=1}^m\alpha_i \alpha_j y_iy_j\boldsymbol{x}_i^T\boldsymbol{x}_j- \sum_{i=1}^m\alpha_i\\ & s.t. \sum_{i=1}^m \alpha_i y_i =0 \\ & \alpha_i \geq 0 \quad i=1,2,\dots ,m \end{aligned} \]
\[在原\max_{\boldsymbol{\alpha}}\quad \min_{\boldsymbol{w,b}}\quad L(w,b,\alpha)加负号,一样转化为约束最优化问题,为了求解最优解\alpha^*\]
\[ 计算获得\\w^* = \sum_{i =1}^m{\alpha_i}^*y_ix_i\\ b^* = y_i -\sum_{i=1}^m{\alpha_i}^*y_i(x_ix_j)\\ 分离获得超平面:\\ w^*x+ b^* =0\\ 分类决策函数:\\ f(x) =sign(w^*x+b^*) \]
\[引入松弛因子\xi_i的目标函数以下:\\\]
\[ \begin{aligned} & \min_{\boldsymbol{w,b,\xi}}\frac{1}{2}||w||^2 +C\sum_{i = 1}^m\xi_i\\ s.t. & y_i(w.x_i+b)\geq1-\xi_i, i=1,2,\dots ,m \\ & \xi_i \geq 0 \quad i=1,2,\dots ,m \end{aligned} \]
\[同理如上式,构造拉格朗日函数L,再对w,b,\xi分别求偏导,再代入L\]
\[ \begin{aligned} L(\boldsymbol{w},b,\boldsymbol{\alpha},\boldsymbol{\xi},\boldsymbol{\mu}) &= \frac{1}{2}||\boldsymbol{w}||^2+C\sum_{i=1}^m \xi_i+\sum_{i=1}^m \alpha_i(1-\xi_i-y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b))-\sum_{i=1}^m\mu_i \xi_i \end{aligned} \]
\[对w,b,\xi求偏导\]
\[ \begin{aligned} w &= \sum_{i=1}^m\alpha_iy_i\boldsymbol{x}_i \\ 0 &=\sum_{i=1}^m\alpha_iy_i\\ C & = a_i+\mu_i \end{aligned} \]
\[代入L\]
\[ \begin{aligned} \min_{\boldsymbol{w},b,\boldsymbol{\xi}}L(\boldsymbol{w},b,\boldsymbol{\alpha},\boldsymbol{\xi},\boldsymbol{\mu}) &= \frac{1}{2}||\boldsymbol{w}||^2+C\sum_{i=1}^m \xi_i+\sum_{i=1}^m \alpha_i(1-\xi_i-y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b))-\sum_{i=1}^m\mu_i \xi_i \\ &=\frac{1}{2}||\boldsymbol{w}||^2+\sum_{i=1}^m\alpha_i(1-y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b))+C\sum_{i=1}^m \xi_i-\sum_{i=1}^m \alpha_i \xi_i-\sum_{i=1}^m\mu_i \xi_i \\ & = -\frac {1}{2}\sum_{i=1}^{m}\alpha_iy_i\boldsymbol{x}_i^T\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i+\sum _{i=1}^m\alpha_i +\sum_{i=1}^m C\xi_i-\sum_{i=1}^m \alpha_i \xi_i-\sum_{i=1}^m\mu_i \xi_i \\ & = -\frac {1}{2}\sum_{i=1}^{m}\alpha_iy_i\boldsymbol{x}_i^T\sum _{i=1}^m\alpha_iy_i\boldsymbol{x}_i+\sum _{i=1}^m\alpha_i +\sum_{i=1}^m (C-\alpha_i-\mu_i)\xi_i \\ &=\sum _{i=1}^m\alpha_i-\frac {1}{2}\sum_{i=1 }^{m}\sum_{j=1}^{m}\alpha_i\alpha_jy_iy_j\boldsymbol{x}_i^T\boldsymbol{x}_j \end{aligned} \]
\[再求\alpha极大\max\]
\[ \begin{aligned} &\max_{\alpha}\sum _{i=1}^m\alpha_i-\frac {1}{2}\sum_{i=1 }^{m}\sum_{j=1}^{m}\alpha_i\alpha_jy_iy_j\boldsymbol{x}_i^T\boldsymbol{x}_j\\ 转化为\\ &\min_{\alpha}\frac {1}{2}\sum_{i=1 }^{m}\sum_{j=1}^{m}\alpha_i\alpha_jy_iy_j\boldsymbol{x}_i^T\boldsymbol{x}_j-\sum _{i=1}^m\alpha_i\\ &s.t.\sum_{i=1}^m \alpha_i y_i=0 \\ &0 \leq\alpha_i \leq C \quad i=1,2,\dots ,m \end{aligned} \]
\[求最优解\alpha^*\]
\[ 计算获得\\w^* = \sum_{i =1}^m{\alpha_i}^*y_ix_i\\ b^* = (\max_{i: y_i =1} w^*.x_i + \min_{i: y_i =-1} w^x* +x_i)/2\\ 分离获得超平面:\\ w^*x+ b^* =0\\ 分类决策函数:\\ f(x) =sign(w^*x+b^*) \]
\[ \left\{\begin{array}{l} {\alpha_{i}\left(f\left(\boldsymbol{x}_{i}\right)-y_{i}-\epsilon-\xi_{i}\right)=0} \\ {\hat{\alpha}_{i}\left(y_{i}-f\left(\boldsymbol{x}_{i}\right)-\epsilon-\hat{\xi}_{i}\right)=0} \\ {\alpha_{i} \hat{\alpha}_{i}=0, \xi_{i} \hat{\xi}_{i}=0} \\ {\left(C-\alpha_{i}\right) \xi_{i}=0,\left(C-\hat{\alpha}_{i}\right) \hat{\xi}_{i}=0} \end{array}\right. \]
\[推导以下:\\\]
\[ \left\{\begin{array}{l}2{f\left(\boldsymbol{x}_{i}\right)-y_{i}-\epsilon-\xi_{i} \leq 0 } \\ 3{y_{i}-f\left(\boldsymbol{x}_{i}\right)-\epsilon-\hat{\xi}_{i} \leq 0 } \\ 4{-\xi_{i} \leq 0} \\5{-\hat{\xi}_{i} \leq 0}6\end{array}\right. \]
\[ \left\{\begin{array}{l} {\alpha_i\left(f\left(\boldsymbol{x}_{i}\right)-y_{i}-\epsilon-\xi_{i} \right) = 0 } \\ {\hat{\alpha}_i\left(y_{i}-f\left(\boldsymbol{x}_{i}\right)-\epsilon-\hat{\xi}_{i} \right) = 0 } \\ {-\mu_i\xi_{i} = 0 \Rightarrow \mu_i\xi_{i} = 0 } \\ {-\hat{\mu}_i \hat{\xi}_{i} = 0 \Rightarrow \hat{\mu}_i \hat{\xi}_{i} = 0 } \end{array}\right. \]
\[\because\begin{aligned} \mu_i=C-\alpha_i \\ \hat{\mu}_i=C-\hat{\alpha}_i \end{aligned}\]
\[ \left\{\begin{array}{l} {\alpha_i\left(f\left(\boldsymbol{x}_{i}\right)-y_{i}-\epsilon-\xi_{i} \right) = 0 } \\ {\hat{\alpha}_i\left(y_{i}-f\left(\boldsymbol{x}_{i}\right)-\epsilon-\hat{\xi}_{i} \right) = 0 } \\ {(C-\alpha_i)\xi_{i} = 0 } \\ {(C-\hat{\alpha}_i) \hat{\xi}_{i} = 0 } \end{array}\right. \]
\[前面硬间隔与软间隔均处理线性问题,而对非线性问题须要将低维空间映射到高维空间,引入核函数\]
\[多项式核函数\]
\[ k(\vec x,\vec y)= (\vec x,\vec y +c)^2\\ =(\vec x, \vec y)^2+2c\vec x\vec y+c^2\\ =\sum_{i =1}^n \sum_{j=1}^m(x_ix_j)(y_iy_j)+\sum_{i=1}^m(\sqrt {2c}x_i \sqrt{2cy_i})+c^2 \]
\(高斯核函数\)
\[ k(\vec x_1,\vec x_2) = e^-\frac{x_1^2+x_2^2}{2\sigma^2}(1+\frac {x_1 x_2}{\sigma^2}+\frac{x_1^2+x_2^2}{2\sigma^2 \sigma^2}+...+\frac{x_1^n+x_2^n}{n!\sigma^n\sigma^n}) \]
\[ K(x,z) = (x,z)^p\\ 是正定核函数,此处p为正整数,x,z为R \]
\[ \begin{aligned} \min_{\boldsymbol{w,b,\xi}}\quad \frac{1}{2}||w||^2+C\sum_{i=1}^N{\xi_i}^2\\ s.t.\quad y_i(\boldsymbol w.{x_i}+b)\geq 1-\xi_i, i= 1,2,...,N\\ {\xi}_i \geq 0, i=1, 2,...,N \end{aligned}\\ 求其对偶形式 \]
[1] 《机器学习》 邹博
[2] 《SVM的三重境界》 July
[3] 《pumpkin-book》 Datawhale
[4] 《机器学习》周志华
[5] 《机器学习实战》Peter
[6] 《统计学习方法》李航,清华大学出版社,2012
[7] 《机器学习算法精讲》 秦曾昌,2018