当您训练机器学习模型时,您真正在作的是调整其参数,以便它能够将特定输入(例如,图像)映射到某个输出(标签)。咱们的优化目标是追逐咱们模型损失较低的最佳位置,这种状况发生在您的参数以正确的方式调整时。git
如今的神经网络一般具备数百万的参数,所以,你须要向您的机器学习模型喂入必定比例的示例,以得到良好的性能。此外,您须要的参数数量与模型送执行的任务的复杂程度成正比。github
让咱们探讨几种最经常使用的图像加强技术,包括代码示例和加强后的图像可视化。从这里开始,数据将被称为图像。咱们将在全部示例中使用用Python编写的Tensorflow或OpenCV。如下是咱们将在文章中使用的技术索引:算法
从互联网收集的图像将具备不一样的大小。因为在大多数神经网络中存在彻底链接的层,因此馈送到网络的图像将须要固定大小(除非您在传递到密集层以前使用空间金字塔池)。所以,在图像加强发生以前,让咱们将图像预处理到咱们网络所需的大小。使用固定大小的图像,咱们能够得到批量处理它们的好处。网络
1 import tensorflow as tf 2 import matplotlib.image as mpimg 3 import numpy as np 4 5 IMAGE_SIZE = 224 6 7 def tf_resize_images(X_img_file_paths): 8 X_data = [] 9 tf.reset_default_graph() 10 X = tf.placeholder(tf.float32, (None, None, 3)) 11 tf_img = tf.image.resize_images(X, (IMAGE_SIZE, IMAGE_SIZE), 12 tf.image.ResizeMethod.NEAREST_NEIGHBOR) 13 with tf.Session() as sess: 14 sess.run(tf.global_variables_initializer()) 15 16 # Each image is resized individually as different image may be of different size. 17 for index, file_path in enumerate(X_img_file_paths): 18 img = mpimg.imread(file_path)[:, :, :3] # Do not read alpha channel. 19 resized_img = sess.run(tf_img, feed_dict = {X: img}) 20 X_data.append(resized_img) 21 22 X_data = np.array(X_data, dtype = np.float32) # Convert to numpy 23 return X_data
在图像中具备不一样缩放的感兴趣对象是图像多样性的最重要方面。当您的网络掌握在真实用户手中时,图像中的对象可能很小或很大。此外,有时,物体能够覆盖整个图像,但不会彻底存在于图像中(即在物体的边缘处被裁剪)。app
def central_scale_images(X_imgs, scales): # Various settings needed for Tensorflow operation boxes = np.zeros((len(scales), 4), dtype = np.float32) for index, scale in enumerate(scales): x1 = y1 = 0.5 - 0.5 * scale # To scale centrally x2 = y2 = 0.5 + 0.5 * scale boxes[index] = np.array([y1, x1, y2, x2], dtype = np.float32) box_ind = np.zeros((len(scales)), dtype = np.int32) crop_size = np.array([IMAGE_SIZE, IMAGE_SIZE], dtype = np.int32) X_scale_data = [] tf.reset_default_graph() X = tf.placeholder(tf.float32, shape = (1, IMAGE_SIZE, IMAGE_SIZE, 3)) # Define Tensorflow operation for all scales but only one base image at a time tf_img = tf.image.crop_and_resize(X, boxes, box_ind, crop_size) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for img_data in X_imgs: batch_img = np.expand_dims(img_data, axis = 0) scaled_imgs = sess.run(tf_img, feed_dict = {X: batch_img}) X_scale_data.extend(scaled_imgs) X_scale_data = np.array(X_scale_data, dtype = np.float32) return X_scale_data # Produce each image at scaling of 90%, 75% and 60% of original image. scaled_imgs = central_scale_images(X_imgs, [0.90, 0.75, 0.60])
from math import ceil, floor def get_translate_parameters(index): if index == 0: # Translate left 20 percent offset = np.array([0.0, 0.2], dtype = np.float32) size = np.array([IMAGE_SIZE, ceil(0.8 * IMAGE_SIZE)], dtype = np.int32) w_start = 0 w_end = int(ceil(0.8 * IMAGE_SIZE)) h_start = 0 h_end = IMAGE_SIZE elif index == 1: # Translate right 20 percent offset = np.array([0.0, -0.2], dtype = np.float32) size = np.array([IMAGE_SIZE, ceil(0.8 * IMAGE_SIZE)], dtype = np.int32) w_start = int(floor((1 - 0.8) * IMAGE_SIZE)) w_end = IMAGE_SIZE h_start = 0 h_end = IMAGE_SIZE elif index == 2: # Translate top 20 percent offset = np.array([0.2, 0.0], dtype = np.float32) size = np.array([ceil(0.8 * IMAGE_SIZE), IMAGE_SIZE], dtype = np.int32) w_start = 0 w_end = IMAGE_SIZE h_start = 0 h_end = int(ceil(0.8 * IMAGE_SIZE)) else: # Translate bottom 20 percent offset = np.array([-0.2, 0.0], dtype = np.float32) size = np.array([ceil(0.8 * IMAGE_SIZE), IMAGE_SIZE], dtype = np.int32) w_start = 0 w_end = IMAGE_SIZE h_start = int(floor((1 - 0.8) * IMAGE_SIZE)) h_end = IMAGE_SIZE return offset, size, w_start, w_end, h_start, h_end def translate_images(X_imgs): offsets = np.zeros((len(X_imgs), 2), dtype = np.float32) n_translations = 4 X_translated_arr = [] tf.reset_default_graph() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(n_translations): X_translated = np.zeros((len(X_imgs), IMAGE_SIZE, IMAGE_SIZE, 3), dtype = np.float32) X_translated.fill(1.0) # Filling background color base_offset, size, w_start, w_end, h_start, h_end = get_translate_parameters(i) offsets[:, :] = base_offset glimpses = tf.image.extract_glimpse(X_imgs, size, offsets) glimpses = sess.run(glimpses) X_translated[:, h_start: h_start + size[0], \ w_start: w_start + size[1], :] = glimpses X_translated_arr.extend(X_translated) X_translated_arr = np.array(X_translated_arr, dtype = np.float32) return X_translated_arr translated_imgs = translate_images(X_imgs)
def rotate_images(X_imgs): X_rotate = [] tf.reset_default_graph() X = tf.placeholder(tf.float32, shape = (IMAGE_SIZE, IMAGE_SIZE, 3)) k = tf.placeholder(tf.int32) tf_img = tf.image.rot90(X, k = k) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for img in X_imgs: for i in range(3): # Rotation at 90, 180 and 270 degrees rotated_img = sess.run(tf_img, feed_dict = {X: img, k: i + 1}) X_rotate.append(rotated_img) X_rotate = np.array(X_rotate, dtype = np.float32) return X_rotate rotated_imgs = rotate_images(X_imgs)
根据上面的需求,它多是必要的对于各类角度。若是这图片的背景是一种固定的颜色,新加的颜色须要与背景融合,不然,神经网络不会将它做为一种特征来学习,而这种特征是没必要要的。dom
from math import pi def rotate_images(X_imgs, start_angle, end_angle, n_images): X_rotate = [] iterate_at = (end_angle - start_angle) / (n_images - 1) tf.reset_default_graph() X = tf.placeholder(tf.float32, shape = (None, IMAGE_SIZE, IMAGE_SIZE, 3)) radian = tf.placeholder(tf.float32, shape = (len(X_imgs))) tf_img = tf.contrib.image.rotate(X, radian) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for index in range(n_images): degrees_angle = start_angle + index * iterate_at radian_value = degrees_angle * pi / 180 # Convert to radian radian_arr = [radian_value] * len(X_imgs) rotated_imgs = sess.run(tf_img, feed_dict = {X: X_imgs, radian: radian_arr}) X_rotate.extend(rotated_imgs) X_rotate = np.array(X_rotate, dtype = np.float32) return X_rotate # Start rotation at -90 degrees, end at 90 degrees and produce totally 14 images rotated_imgs = rotate_images(X_imgs, -90, 90, 14)
这种状况对于网络来讲更重要的是消除假设对象的某些特征仅在特定方面可用的误差。考虑图像示例中显示的状况。您不但愿网络知道香蕉的倾斜仅发生在基本图像中观察到的右侧。机器学习
def flip_images(X_imgs): X_flip = [] tf.reset_default_graph() X = tf.placeholder(tf.float32, shape = (IMAGE_SIZE, IMAGE_SIZE, 3)) tf_img1 = tf.image.flip_left_right(X) tf_img2 = tf.image.flip_up_down(X) tf_img3 = tf.image.transpose_image(X) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for img in X_imgs: flipped_imgs = sess.run([tf_img1, tf_img2, tf_img3], feed_dict = {X: img}) X_flip.extend(flipped_imgs) X_flip = np.array(X_flip, dtype = np.float32) return X_flip flipped_images = flip_images(X_imgs)
def add_salt_pepper_noise(X_imgs): # Need to produce a copy as to not modify the original image X_imgs_copy = X_imgs.copy() row, col, _ = X_imgs_copy[0].shape salt_vs_pepper = 0.2 amount = 0.004 num_salt = np.ceil(amount * X_imgs_copy[0].size * salt_vs_pepper) num_pepper = np.ceil(amount * X_imgs_copy[0].size * (1.0 - salt_vs_pepper)) for X_img in X_imgs_copy: # Add Salt noise coords = [np.random.randint(0, i - 1, int(num_salt)) for i in X_img.shape] X_img[coords[0], coords[1], :] = 1 # Add Pepper noise coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in X_img.shape] X_img[coords[0], coords[1], :] = 0 return X_imgs_copy salt_pepper_noise_imgs = add_salt_pepper_noise(X_imgs)
import cv2 def add_gaussian_noise(X_imgs): gaussian_noise_imgs = [] row, col, _ = X_imgs[0].shape # Gaussian distribution parameters mean = 0 var = 0.1 sigma = var ** 0.5 for X_img in X_imgs: gaussian = np.random.random((row, col, 1)).astype(np.float32) gaussian = np.concatenate((gaussian, gaussian, gaussian), axis = 2) gaussian_img = cv2.addWeighted(X_img, 0.75, 0.25 * gaussian, 0.25, 0) gaussian_noise_imgs.append(gaussian_img) gaussian_noise_imgs = np.array(gaussian_noise_imgs, dtype = np.float32) return gaussian_noise_imgs gaussian_noise_imgs = add_gaussian_noise(X_imgs)
def get_mask_coord(imshape): vertices = np.array([[(0.09 * imshape[1], 0.99 * imshape[0]), (0.43 * imshape[1], 0.32 * imshape[0]), (0.56 * imshape[1], 0.32 * imshape[0]), (0.85 * imshape[1], 0.99 * imshape[0])]], dtype = np.int32) return vertices def get_perspective_matrices(X_img): offset = 15 img_size = (X_img.shape[1], X_img.shape[0]) # Estimate the coordinates of object of interest inside the image. src = np.float32(get_mask_coord(X_img.shape)) dst = np.float32([[offset, img_size[1]], [offset, 0], [img_size[0] - offset, 0], [img_size[0] - offset, img_size[1]]]) perspective_matrix = cv2.getPerspectiveTransform(src, dst) return perspective_matrix def perspective_transform(X_img): # Doing only for one type of example perspective_matrix = get_perspective_matrices(X_img) warped_img = cv2.warpPerspective(X_img, perspective_matrix, (X_img.shape[1], X_img.shape[0]), flags = cv2.INTER_LINEAR) return warped_img perspective_img = perspective_transform(X_img)
尽管上面的图像加强方法列表并不是详尽无遗,可是包含了许多普遍使用的方法,您能够组合的使用这些扩充来生成更多的图像。您能够在Github中查看本文使用的代码。ide