转载自:html
https://github.com/digoal/blog/blob/master/201708/20170818_02.md?spm=a2c4e.11153940.blogcont179210.17.6f682764HWr8pC&file=20170818_02.mdgit
Greenplum支持行存和列存,支持堆表和AO表,那么他们有什么不一样,如何选择呢?github
一、行存,以行为形式组织存储,一行是一个tuple,存在一块儿。当须要读取某列时,须要将这列前面的全部列都进行deform,因此访问第一列和访问最后一列的成本其实是不同的。sql
在这篇文档中,有deform的详细介绍。《PostgreSQL 向量化执行插件(瓦片式实现) 10x提速OLAP》数据库
行存小结:架构
全表扫描要扫描更多的数据块。app
压缩比较低。dom
读取任意列的成本不同,越靠后的列,成本越高。函数
不适合向量计算、JIT架构。(简单来讲,就是不适合批处理形式的计算)oop
须要REWRITE表时,须要对全表进行REWRITE,例如加字段有默认值。
二、列存,以列为形式组织存储,每列对应一个或一批文件。读取任一列的成本是同样的,可是若是要读取多列,须要访问多个文件,访问的列越多,开销越大。
列存小结:
压缩比高。
仅仅支持AO存储(后面会将)。
读取任意列的成本是同样的。
很是适合向量计算、JIT架构。对大批量数据的访问和统计,效率更高。
读取不少列时,因为须要访问更多的文件,成本更高。例如查询明细。
须要REWRITE表时,不须要对全表操做,例如加字段有默认值,只是添加字段对应的那个文件。
若是OLTP的需求偏多,例如常常须要查询表的明细(输出不少列),须要更多的更新和删除操做时。能够考虑行存。
若是OLAP的需求偏多,常常须要对数据进行统计时,选择列存。
须要比较高的压缩比时,选择列存。
若是用户有混合需求,能够采用分区表,例如按时间维度的需求分区,近期的数据明细查询多,那就使用行存,对历史的数据统计需求多那就使用列存。
一、堆表,实际上就是PG的堆存储,堆表的全部变动都会产生REDO,能够实现时间点恢复。可是堆表不能实现逻辑增量备份(由于表的任意一个数据块都有可能变动,不方便经过堆存储来记录位点。)。
一个事务结束时,经过clog以及REDO来实现它的可靠性。同时支持经过REDO来构建MIRROR节点实现数据冗余。
二、AO表,看名字就知道,只追加的存储,删除更新数据时,经过另外一个BITMAP文件来标记被删除的行,经过bit以及偏移对齐来断定AO表上的某一行是否被删除。
事务结束时,须要调用FSYNC,记录最后一次写入对应的数据块的偏移。(而且这个数据块即便只有一条记录,下次再发起事务又会从新追加一个数据块)同时发送对应的数据块给MIRROR实现数据冗余。
所以AO表不适合小事务,由于每次事务结束都会FSYNC,同时事务结束后这个数据块即便有空余也不会被复用。(你能够测试一下,AO表单条提交的IO放大很严重)。
虽然如此,AO表很是适合OLAP场景,批量的数据写入,高压缩比,逻辑备份支持增量备份,所以每次记录备份到的偏移量便可。加上每次备份全量的BITMAP删除标记(很小)。
当数据写入时,小事务偏多时选择堆表。
当须要时间点恢复时,选择堆表。
当须要列存时,选择AO表。
当数据批量写入时,选择AO表。
一、建立一个函数,用于建立400列的表(行存堆表、AO行存表、AO列存表)。
create or replace function f(name, int, text) returns void as $$ declare res text := ''; begin for i in 1..$2 loop res := res||'c'||i||' int8,'; end loop; res := rtrim(res, ','); if $3 = 'ao_col' then res := 'create table '||$1||'('||res||') with (appendonly=true, blocksize=8192, compresstype=none, orientation=column)'; elsif $3 = 'ao_row' then res := 'create table '||$1||'('||res||') with (appendonly=true, blocksize=8192, orientation=row)'; elsif $3 = 'heap_row' then res := 'create table '||$1||'('||res||') with (appendonly=false)'; else raise notice 'use ao_col, ao_row, heap_row as $3'; return; end if; execute res; end; $$ language plpgsql;
二、建立表以下
postgres=# select f('tbl_ao_col', 400, 'ao_col'); postgres=# select f('tbl_ao_row', 400, 'ao_row'); postgres=# select f('tbl_heap_row', 400, 'heap_row');
三、建立1个函数,用于填充数据,其中第一个和最后3个字段为测试数据的字段,其余都填充1。
create or replace function f_ins1(name, int, int8) returns void as $$ declare res text := ''; begin for i in 1..($2-4) loop res := res||'1,'; end loop; res := 'id,'||res; res := rtrim(res, ','); res := 'insert into '||$1||' select '||res||'id,random()*10000,random()*100000 from generate_series(1,'||$3||') t(id)'; execute res; end; $$ language plpgsql;
四、填充数据
postgres=# select f_ins1('tbl_ao_col',400,1000000);
五、建立1个函数,用于填充数据,其中前4个字段为测试数据的字段,其余都填充1。
create or replace function f_ins2(name, int, int8) returns void as $$ declare res text := ''; begin for i in 1..($2-4) loop res := res||'1,'; end loop; res := 'id,id,random()*10000,random()*100000,'||res; res := rtrim(res, ','); res := 'insert into '||$1||' select '||res||' from generate_series(1,'||$3||') t(id)'; execute res; end; $$ language plpgsql;
六、填充数据
postgres=# select f_ins1('tbl_ao_col',400,1000000); f_ins1 -------- (1 row) postgres=# insert into tbl_ao_row select * from tbl_ao_col; INSERT 0 1000000 postgres=# insert into tbl_heap_row select * from tbl_ao_col; INSERT 0 1000000
七、表分析
postgres=# analyze tbl_ao_col ; ANALYZE postgres=# analyze tbl_ao_row; ANALYZE postgres=# analyze tbl_heap_row; ANALYZE
八、表大小
postgres=# select pg_size_pretty(pg_relation_size('tbl_ao_col')); pg_size_pretty ---------------- 3060 MB (1 row) postgres=# select pg_size_pretty(pg_relation_size('tbl_ao_row')); pg_size_pretty ---------------- 3117 MB (1 row) postgres=# select pg_size_pretty(pg_relation_size('tbl_heap_row')); pg_size_pretty ---------------- 3473 MB (1 row)
九、行存堆表,前面几个字段的统计
postgres=# explain analyze select c2,count(*),sum(c3),avg(c3),min(c3),max(c3) from tbl_heap_row group by c2; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------------------------------- Gather Motion 48:1 (slice2; segments: 48) (cost=136132.40..136132.42 rows=1 width=96) Rows out: 1 rows at destination with 135 ms to end, start offset by 1.922 ms. -> HashAggregate (cost=136132.40..136132.42 rows=1 width=96) Group By: tbl_heap_row.c2 Rows out: 1 rows (seg42) with 0.002 ms to first row, 36 ms to end, start offset by 48 ms. -> Redistribute Motion 48:48 (slice1; segments: 48) (cost=136132.35..136132.37 rows=1 width=96) Hash Key: tbl_heap_row.c2 Rows out: 48 rows at destination (seg42) with 53 ms to end, start offset by 48 ms. -> HashAggregate (cost=136132.35..136132.35 rows=1 width=96) Group By: tbl_heap_row.c2 Rows out: Avg 1.0 rows x 48 workers. Max 1 rows (seg0) with 0.008 ms to first row, 1.993 ms to end, start offset by 48 ms. -> Seq Scan on tbl_heap_row (cost=0.00..121134.54 rows=20831 width=16) Rows out: Avg 20833.3 rows x 48 workers. Max 20854 rows (seg42) with 40 ms to first row, 73 ms to end, start offset by 50 ms. Slice statistics: (slice0) Executor memory: 345K bytes. (slice1) Executor memory: 751K bytes avg x 48 workers, 751K bytes max (seg0). (slice2) Executor memory: 359K bytes avg x 48 workers, 374K bytes max (seg42). Statement statistics: Memory used: 128000K bytes Settings: optimizer=off Optimizer status: legacy query optimizer Total runtime: 138.524 ms (22 rows)
十、行存堆表,末尾几个字段的统计
postgres=# explain analyze select c398,count(*),sum(c399),avg(c399),min(c399),max(c399) from tbl_heap_row group by c398; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------------------------ Gather Motion 48:1 (slice2; segments: 48) (cost=136576.82..136799.05 rows=9877 width=96) Rows out: 10001 rows at destination with 212 ms to end, start offset by 1.917 ms. -> HashAggregate (cost=136576.82..136799.05 rows=206 width=96) Group By: tbl_heap_row.c398 Rows out: Avg 208.4 rows x 48 workers. Max 223 rows (seg17) with 0.001 ms to first row, 70 ms to end, start offset by 14 ms. -> Redistribute Motion 48:48 (slice1; segments: 48) (cost=136132.35..136329.89 rows=206 width=96) Hash Key: tbl_heap_row.c398 Rows out: Avg 8762.2 rows x 48 workers at destination. Max 9422 rows (seg46) with 93 ms to end, start offset by 48 ms. -> HashAggregate (cost=136132.35..136132.35 rows=206 width=96) Group By: tbl_heap_row.c398 Rows out: Avg 8762.2 rows x 48 workers. Max 8835 rows (seg2) with 0.003 ms to first row, 12 ms to end, start offset by 49 ms. -> Seq Scan on tbl_heap_row (cost=0.00..121134.54 rows=20831 width=16) Rows out: Avg 20833.3 rows x 48 workers. Max 20854 rows (seg42) with 40 ms to first row, 133 ms to end, start offset by 51 ms. Slice statistics: (slice0) Executor memory: 377K bytes. (slice1) Executor memory: 1156K bytes avg x 48 workers, 1156K bytes max (seg0). (slice2) Executor memory: 414K bytes avg x 48 workers, 414K bytes max (seg1). Statement statistics: Memory used: 128000K bytes Settings: optimizer=off Optimizer status: legacy query optimizer Total runtime: 214.024 ms (22 rows)
十一、行存AO表,前面几个字段的统计
postgres=# explain analyze select c2,count(*),sum(c3),avg(c3),min(c3),max(c3) from tbl_ao_row group by c2; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------------------- Gather Motion 48:1 (slice2; segments: 48) (cost=124755.04..124755.07 rows=1 width=96) Rows out: 1 rows at destination with 149 ms to end, start offset by 1.890 ms. -> HashAggregate (cost=124755.04..124755.07 rows=1 width=96) Group By: tbl_ao_row.c2 Rows out: 1 rows (seg42) with 0.004 ms to first row, 55 ms to end, start offset by 64 ms. -> Redistribute Motion 48:48 (slice1; segments: 48) (cost=124755.00..124755.02 rows=1 width=96) Hash Key: tbl_ao_row.c2 Rows out: 48 rows at destination (seg42) with 32 ms to end, start offset by 64 ms. -> HashAggregate (cost=124755.00..124755.00 rows=1 width=96) Group By: tbl_ao_row.c2 Rows out: Avg 1.0 rows x 48 workers. Max 1 rows (seg0) with 0.001 ms to first row, 46 ms to end, start offset by 59 ms. -> Append-only Scan on tbl_ao_row (cost=0.00..109755.00 rows=20834 width=16) Rows out: Avg 20833.3 rows x 48 workers. Max 20854 rows (seg42) with 24 ms to end, start offset by 59 ms. Slice statistics: (slice0) Executor memory: 345K bytes. (slice1) Executor memory: 770K bytes avg x 48 workers, 770K bytes max (seg0). (slice2) Executor memory: 359K bytes avg x 48 workers, 374K bytes max (seg42). Statement statistics: Memory used: 128000K bytes Settings: optimizer=off Optimizer status: legacy query optimizer Total runtime: 152.386 ms (22 rows)
十二、行存AO表,末尾几个字段的统计
postgres=# explain analyze select c398,count(*),sum(c399),avg(c399),min(c399),max(c399) from tbl_ao_row group by c398; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------------------------- Gather Motion 48:1 (slice2; segments: 48) (cost=125186.01..125401.52 rows=9578 width=96) Rows out: 10001 rows at destination with 183 ms to end, start offset by 1.846 ms. -> HashAggregate (cost=125186.01..125401.52 rows=200 width=96) Group By: tbl_ao_row.c398 Rows out: Avg 208.4 rows x 48 workers. Max 223 rows (seg17) with 0.003 ms to first row, 97 ms to end, start offset by 22 ms. -> Redistribute Motion 48:48 (slice1; segments: 48) (cost=124755.00..124946.56 rows=200 width=96) Hash Key: tbl_ao_row.c398 Rows out: Avg 8762.2 rows x 48 workers at destination. Max 9422 rows (seg46) with 32 ms to end, start offset by 68 ms. -> HashAggregate (cost=124755.00..124755.00 rows=200 width=96) Group By: tbl_ao_row.c398 Rows out: Avg 8762.2 rows x 48 workers. Max 8835 rows (seg2) with 0.013 ms to first row, 48 ms to end, start offset by 22 ms. -> Append-only Scan on tbl_ao_row (cost=0.00..109755.00 rows=20834 width=16) Rows out: Avg 20833.3 rows x 48 workers. Max 20854 rows (seg42) with 22 ms to end, start offset by 71 ms. Slice statistics: (slice0) Executor memory: 377K bytes. (slice1) Executor memory: 1144K bytes avg x 48 workers, 1144K bytes max (seg0). (slice2) Executor memory: 414K bytes avg x 48 workers, 414K bytes max (seg0). Statement statistics: Memory used: 128000K bytes Settings: optimizer=off Optimizer status: legacy query optimizer Total runtime: 184.723 ms (22 rows)
1三、列存AO表,前面几个字段的统计
postgres=# explain analyze select c2,count(*),sum(c3),avg(c3),min(c3),max(c3) from tbl_ao_col group by c2; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------------------------- Gather Motion 48:1 (slice2; segments: 48) (cost=122928.04..122928.07 rows=1 width=96) Rows out: 1 rows at destination with 104 ms to end, start offset by 1.878 ms. -> HashAggregate (cost=122928.04..122928.07 rows=1 width=96) Group By: tbl_ao_col.c2 Rows out: 1 rows (seg42) with 0.003 ms to first row, 18 ms to end, start offset by 55 ms. -> Redistribute Motion 48:48 (slice1; segments: 48) (cost=122928.00..122928.02 rows=1 width=96) Hash Key: tbl_ao_col.c2 Rows out: 48 rows at destination (seg42) with 30 ms to end, start offset by 55 ms. -> HashAggregate (cost=122928.00..122928.00 rows=1 width=96) Group By: tbl_ao_col.c2 Rows out: Avg 1.0 rows x 48 workers. Max 1 rows (seg0) with 0.007 ms to first row, 3.991 ms to end, start offset by 54 ms. -> Append-only Columnar Scan on tbl_ao_col (cost=0.00..107928.00 rows=20834 width=16) Rows out: 0 rows (seg0) with 40 ms to end, start offset by 56 ms. Slice statistics: (slice0) Executor memory: 345K bytes. (slice1) Executor memory: 903K bytes avg x 48 workers, 903K bytes max (seg0). (slice2) Executor memory: 359K bytes avg x 48 workers, 374K bytes max (seg42). Statement statistics: Memory used: 128000K bytes Settings: optimizer=off Optimizer status: legacy query optimizer Total runtime: 106.859 ms (22 rows)
1四、列存AO表,末尾几个字段的统计
postgres=# explain analyze select c398,count(*),sum(c399),avg(c399),min(c399),max(c399) from tbl_ao_col group by c398; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------------------------------- Gather Motion 48:1 (slice2; segments: 48) (cost=123364.18..123582.28 rows=9693 width=96) Rows out: 10001 rows at destination with 120 ms to end, start offset by 1.921 ms. -> HashAggregate (cost=123364.18..123582.28 rows=202 width=96) Group By: tbl_ao_col.c398 Rows out: Avg 208.4 rows x 48 workers. Max 223 rows (seg17) with 0.001 ms to first row, 54 ms to end, start offset by 35 ms. -> Redistribute Motion 48:48 (slice1; segments: 48) (cost=122928.00..123121.86 rows=202 width=96) Hash Key: tbl_ao_col.c398 Rows out: Avg 8762.2 rows x 48 workers at destination. Max 9422 rows (seg46) with 31 ms to end, start offset by 63 ms. -> HashAggregate (cost=122928.00..122928.00 rows=202 width=96) Group By: tbl_ao_col.c398 Rows out: Avg 8762.2 rows x 48 workers. Max 8835 rows (seg2) with 0.004 ms to first row, 8.004 ms to end, start offset by 82 ms. -> Append-only Columnar Scan on tbl_ao_col (cost=0.00..107928.00 rows=20834 width=16) Rows out: 0 rows (seg0) with 28 ms to end, start offset by 64 ms. Slice statistics: (slice0) Executor memory: 377K bytes. (slice1) Executor memory: 1272K bytes avg x 48 workers, 1272K bytes max (seg0). (slice2) Executor memory: 414K bytes avg x 48 workers, 414K bytes max (seg0). Statement statistics: Memory used: 128000K bytes Settings: optimizer=off Optimizer status: legacy query optimizer Total runtime: 122.173 ms (22 rows)
对于非分布键的分组聚合请求,Greenplum采用了多阶段聚合以下:
第一阶段,在SEGMENT本地聚合。(须要扫描全部数据,这里不一样存储,前面的列和后面的列的差异就体现出来了,行存储的deform开销,在对后面的列进行统计时性能影响很明显。) Greenplum会根据字段的distinct值的比例,考虑是直接重分布数据,仍是先在本地聚合后再重分布数据(减小重分布的数据量)。
第二阶段,根据分组字段,将结果数据重分布。(重分布须要用到的字段,此时结果很小。)
第三阶段,再次在SEGMENT本地聚合。(须要对重分布后的数据进行聚合。)
第四阶段,返回结果给master,有必要的话master节点调用聚合函数的final func(已是不多的记录数和运算量)。
pg_class.relstorage表示这个对象是什么存储:
postgres=# select distinct relstorage from pg_class ; relstorage ------------ a -- 行存储AO表 h -- heap堆表、索引 x -- 外部表(external table) v -- 视图 c -- 列存储AO表 (5 rows)
查询当前数据库有哪些AO表:
postgres=# select t2.nspname, t1.relname from pg_class t1, pg_namespace t2 where t1.relnamespace=t2.oid and relstorage in ('c', 'a'); nspname | relname ----------+------------------- postgres | tbl_tag postgres | tbl_pos_1_prt_p1 postgres | tbl_pos_1_prt_p2 postgres | tbl_pos_1_prt_p3 postgres | tbl_pos_1_prt_p4 postgres | tbl_pos_1_prt_p5 postgres | tbl_pos_1_prt_p6 postgres | tbl_pos_1_prt_p7 postgres | tbl_pos_1_prt_p8 postgres | tbl_pos_1_prt_p9 postgres | tbl_pos_1_prt_p10 postgres | tbl_pos postgres | xx_czrk_qm_col postgres | ao1 (14 rows)
查询当前数据库有哪些堆表:
select t2.nspname, t1.relname from pg_class t1, pg_namespace t2 where t1.relnamespace=t2.oid and relstorage in ('h') and relkind='r';