深度学习中防止过拟合的方法有哪些?

过拟合是指在模型参数拟合过程中,由于训练数据包含抽样误差,复杂模型在训练时也将抽样误差进行了很好的拟合。具体表现就是在训练集上效果好,而测试集效果差,模型泛化能力弱。 解决过拟合的方法: 1.从数据入手 解决过拟合最有效的方法,就是尽力补足数据,让模型看见更加全面的样本,不断修正自己。 数据增强:通过一定规则扩充数据。可以通过图像平移、翻转、缩放、切割等手段将数据库成倍扩充。当然,随着GAN的发展
相关文章
相关标签/搜索