JMC | 药物发现中的迁移学习

作者/编辑 | 王建民 导读 药物发现工作中可用于训练计算模型的数据集通常很少。标记数据的稀疏可用性是人工智能辅助药物发现的主要障碍。解决该问题的一种方法是开发可以处理相对异构和稀缺数据的算法。迁移学习是一种机器学习方法,可以利用其他相关任务中现有的,可推广的知识来学习带有少量数据的单独任务。深度迁移学习是药物发现领域最常用的迁移学习模型。本文概述了迄今为止转移学习和药物发现的相关应用。此外,它为
相关文章
相关标签/搜索