单位根的定义就不说了。ide
显然有:code
带入这个能够直接证得:递归
咱们用图像理性理解可得(就是绕着原点把向量转了180度):it
依然根据图像可得(就是绕着原点旋转了360度):class
由欧拉公式得:循环
因此有:二进制
咱们先带入\(\omega_n^1,\omega_n^2,...,\omega_n^n\)到多项式\(A\)中,求出\(A(\omega_n^1),A(\omega_n^2),...,A(\omega_n^n)\)。im
为了方便,假设长度\(n\)为\(2^k\)(高位不够的添0便可)di
把A下标奇偶分类:view
显然有:
这两个式子只有后面一项是相反的,能够递归求解。
因而给出代码:
inline void FFT(complex<double> *a, int len) { if (!len) return ; complex<double> a1[len], a2[len]; for (int i = 0; i < len; ++i) a1[i] = a[i << 1], a2[i] = a[i << 1 | 1]; FFT(a1, len >> 1); FFT(a2, len >> 1); complex<double> w(cos(PI / len), sin(PI / len)), wk(1, 0); for (int i = 0; i < len; ++i, wk *= w) a[i] = a1[i] + wk * a2[i], a[i + len] = a1[i] - wk * a2[i]; }
考虑怎么从点值多项式转换到系数多项式。
咱们钦定\(y_i=A(\omega_n^i)\),在有一多项式\(C\),知足:
则咱们带入\(\omega_n^{-k}\),获得:
设:
当\(k\neq 0\)时为0,不然为\(n\)
则:
即当\(i=k\)时为\(n\),因此:
咱们惊讶的发现这样对\(C\)作一次FFT以后点值除以n就是多项式的系数了。
代码结合一下:
inline void FFT(complex<double> *a, int len, int flag) { if (!len) return ; complex<double> a1[len], a2[len]; for (int i = 0; i < len; ++i) a1[i] = a[i << 1], a2[i] = a[i << 1 | 1]; FFT(a1, len >> 1, flag); FFT(a2, len >> 1, flag); complex<double> w(cos(PI / len), flag * sin(PI / len)), wk(1, 0); for (int i = 0; i < len; ++i, wk *= w) a[i] = a1[i] + wk * a2[i], a[i + len] = a1[i] - wk * a2[i]; }
发现递归版的码会T,手玩一下发现实际上奇偶变换后下标的操做至关于二进制反过来,能够改为非递归来模拟,本身对着码手玩看看就明白。
inline void FFT(complex *a, int type) { for (int i = 0; i < lim; ++i) if (i < rev[i]) swap(a[i], a[rev[i]]); for (int mid = 1; mid < lim; mid <<= 1) { complex wn; wn = complex(cos(pi / mid), type * sin(pi / mid)); for (int j = 0; j < lim; j += mid << 1) { complex bas; bas = complex(1, 0); for (int k = 0; k < mid; ++k, bas = bas * wn) { complex x = a[j + k], y = bas * a[j + mid + k]; a[j + k] = x + y; a[j + mid + k] = x - y; } } } }
解释一下,第一层循环枚举的是递归的层数,即当前合并的两个多项式的长度。第二层就是枚举当前要合并多项式的起点,第三层就是枚举的具体的那一个系数。这么说不是很清楚,仍是本身造样例跟着代码手玩一下就明白了。
而NTT呢?设模数为p,g是p的原根,则不须要证实的给出,\(\omega_n^1\)等价于\(g^{p-1\over n} \bmod p\)。把上面的码代码里的wn换成这个就好了。通常p=998244353,此时g=3。
给个板子:
struct poly { int n; vector<ll> x; inline void NTT(int flag) { for (int i = 0; i < n; ++i) if (i < rev[i]) swap(x[i], x[rev[i]]); for (int mid = 1; mid < n; mid <<= 1) { ll wn = power(flag == 1 ? G : Gi, (mod - 1) / (mid << 1)); for (int j = 0; j < n; j += mid << 1) { ll bas = 1; for (int k = 0; k < mid; ++k, bas = (bas * wn) % mod) { ll xx = x[j + k], y = (bas * x[j + mid + k]) % mod; x[j + k] = (xx + y) % mod; x[j + mid + k] = ((xx - y) % mod + mod) % mod; } } cerr << endl; } } }; inline int max_(int a, int b) { return a > b ? a : b; } inline poly mul(poly A, poly B) { poly a, b; a = A; b = B; int tmp = a.n + b.n; a.n = 1; int L = 0; while (a.n <= tmp) a.n <<= 1, ++L; for (int i = 0; i <= a.n; ++i) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << L - 1); b.n = a.n; a.NTT(1); b.NTT(1); for (int i = 0; i < a.n; ++i) a.x[i] = (a.x[i] * b.x[i]) % mod; a.NTT(-1); const ll inv = power(a.n, mod - 2); a.n = tmp; for (int i = 0; i <= a.n; ++i) a.x[i] = (a.x[i] * inv) % mod; return a; }