[剑指offer]14-1.剪绳子

14-1.剪绳子

方法一 动态规划

思路:递归式为f(n)=max(f(i), f(n-i)),i=1,2,...,n-1python

虽然我如今也没有完全明白这个递归式是怎么来的,但用的时候仍是要注意一下。f(i)是指长度为i时的最大乘积。算法

可是,上面关于f(i)的定义,当i=1,2,3时是不成立的。翻译

由于,长度为1时,只能返回0;长度为2时,只能返回1,;长度为3时,只能返回2。可是为了方便之后的计算,强行规定f(1)=1,f(2)=2,f(3)=3.code

代码递归

class Solution:
    def cuttingRope(self, n: int) -> int:
        if n < 2:
            return 0
        if n == 2:
            return 1
        if n == 3:
            return 2
        dp = [0 for _ in range(n+1)]
        dp[0] = 0
        dp[1] = 1
        dp[2] = 2
        dp[3] = 3
        for i in range(4, n+1):
            max = 0
            for j in range(1, i//2+1):
                dP = dp[j]*dp[i-j]
                if max < dP:
                    max = dP
            dp[i] = max
        return dp[n]

结果内存

执行用时 :44 ms, 在全部 Python3 提交中击败了54.30%的用户
内存消耗 :13.5 MB, 在全部 Python3 提交中击败了100.00%的用户数学

方法二 贪心算法

思路:尽可能取3,而后取2.io

具体操做以下:对于长度=n的绳子,先取n//3(向下取整)段长度=3m的绳子。若是此时绳子长度仅剩1m,则只取(n//3-1)段3m的绳子(保证剩下的绳长为偶数)。class

对于剩下的偶数绳长,将它切成2m一段的绳子便可。原理

最后的乘积为(3(timesOf3))*(2(timesOf2)).

代码

class Solution:
    def cuttingRope(self, n: int) -> int:
        if n < 2:
            return 0
        if n == 2:
            return 1
        if n == 3:
            return 2
        timesOf3 = n // 3
        if n - timesOf3*3 == 1:
            timesOf3 -= 1
        timesOf2 = (n - timesOf3*3)//2
        return pow(3, timesOf3)*pow(2, timesOf2)

结果

执行用时 :52 ms, 在全部 Python3 提交中击败了30.30%的用户
内存消耗 :13.5 MB, 在全部 Python3 提交中击败了100.00%的用户

写在最后

这道题能够用递归作。可是因为f(1),f(2),f(3)不是当绳子长度为1,2,3时的最大乘积,因此我尚未想到怎么去作。

另外,不管动态规划仍是贪心算法,数学原理我仍然蒙圈。这个代码是从剑指offer的C语言翻译过来的,我好像只能作知识的搬运工...

相关文章
相关标签/搜索