最近15分钟的平均访问时间,upstream_time_ms是每次访问时间,单位毫秒json
{ "query": { "filtered": { "filter": { "range": { "@timestamp": { "gt": "now-15m", "lt": "now" } } } } }, "aggs": { "execute_time": { "avg": { "field": "upstream_time_ms" } } } } //固然你也能够直接将过滤器写在aggs里面 { "size": 0, "aggs": { "filtered_aggs": { "filter": { "range": { "@timestamp": { "gt": "now-15m", "lt": "now" } } }, "aggs": { "execute_time": { "avg": { "field": "upstream_time_ms" } } } } } }
你可能注意到了size:0,若是你只须要统计数据,不要数据自己,就设置它,这不是我投机取巧,官方文档也是这么干的。性能
{ "size": 0, "aggs": { "filtered_aggs": { "filter": { "range": { "@timestamp": { "gt": "now-15m", "lt": "now" } } }, "aggs": { "ipv": { "cardinality": { "field": "ip" } } } } } }
最近15分钟,99.9的请求的执行时间不超过多少url
{ "size": 0, "query": { "filtered": { "filter": { "range": { "@timestamp": { "gt": "now-15m", "lt": "now" } } } } }, "aggs": { "execute_time": { "percentiles": { "field": "upstream_time_ms", "percents": [ 90, 95, 99.9 ] } } } } //返回值,0.1%的请求超过了159ms { "took": 620, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 679400, "max_score": 0, "hits": [] }, "aggregations": { "execute_time": { "values": { "90.0": 24.727003484320534, "95.0": 72.6200981699678, "99.9": 159.01065773524886 //99.9的数据落在159之内,是系统计算出来159 } } } }
{ "size": 0, "query": { "filtered": { "filter": { "range": { "@timestamp": { "gt": "now-15m", "lt": "now" } } } } }, "aggs": { "execute_time": { "percentile_ranks": { "field": "upstream_time_ms", "values": [ 50, 160 ] } } } } //返回值 { "took": 666, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 681014, "max_score": 0, "hits": [] }, "aggregations": { "execute_time": { "values": { "50.0": 94.14716385885366, "160.0": 99.91130872493076 //99.9的数据落在了160之内,此次,160是我指定的,系统计算出99.9 } } } }
{ "size": 0, "query": { "filtered": { "filter": { "range": { "@timestamp": { "gt": "now-15m", "lt": "now" } } } } }, "aggs": { "execute_time": { "terms": { "field": "uri" }, "aggs": { "avg_time": { "avg": { "field": "upstream_time_ms" } } } } } } //返回,看起来url1 比 url2慢一点(avg_time),不过url1的请求量比较大 (doc_count) { "took": 1655, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 710802, "max_score": 0, "hits": [] }, "aggregations": { "execute_time": { "doc_count_error_upper_bound": 10, "sum_other_doc_count": 347175, "buckets": [ { "key": "/url1", "doc_count": 362688, "avg_time": { "value": 6.601660380271749 } }, { "key": "/url2", "doc_count": 939, "avg_time": { "value": 5.313099041533547 } } ] } } }
{ "size": 0, "query": { "filtered": { "filter": { "range": { "@timestamp": { "gt": "now-15m", "lt": "now" } } } } }, "aggs": { "execute_time": { "terms": { "size": 2, "field": "uri", "order": { "avg_time": "desc" } }, "aggs": { "avg_time": { "avg": { "field": "upstream_time_ms" } } } } } } //返回值 { "took": 1622, "timed_out": false, "_shards": { "total": 5, "successful": 5, "failed": 0 }, "hits": { "total": 748712, "max_score": 0, "hits": [] }, "aggregations": { "execute_time": { "doc_count_error_upper_bound": -1, "sum_other_doc_count": 748710, "buckets": [ { "key": "url_shit", "doc_count": 123, "avg_time": { "value": 8884 } }, { "key": "url_shit2", "doc_count": 456, "avg_time": { "value": 8588 } } ] } } }
至关于
select count(*) from table group by uri,为了达到这个目的,只须要把上文中,avg 换成value_count。不过avg的时候,结果中的doc_count其实达到了一样效果。code
{ "size": 0, "query": { "filtered": { "filter": { "range": { "@timestamp": { "gt": "now-2m", "lt": "now" } } } } }, "aggs": { "execute_time": { "date_histogram": { "field": "@timestamp", "interval": "20s" }, "aggs": { "avg_time": { "avg": { "field": "upstream_time_ms" } } } } } }
周期大小对性能影响不大ip
{ "size":0, "fields":false, "aggs": { "execute_time": { "date_histogram": { "field": "@timestamp", "interval": "1h" } } } }