去nvidia官网查询显卡对应的驱动,并下载。这里的显卡驱动下载连接:Download,密码:mfxh
下载的时候要注意,显卡驱动与ubuntu内核版本对应。对应表来自nvidia官网以下:python
Distribution | Kernel* | GCC | GLIBC |
---|---|---|---|
Ubuntu 18.10 | 4.18.0 | 8.2.0 | 2.28 |
Ubuntu 18.04.1 (**) | 4.15.0 | 7.3.0 | 2.27 |
Ubuntu 16.04.5 (**) | 4.4 | 5.4.0 | 2.23 |
Ubuntu 14.04.5 (**) | 3.13 | 4.8.4 | 2.19 |
$ sudo apt-get install --purge nvidia*
$ sudo gedit /etc/modprobe.d/blacklist.conf
在文末添加:blacklist nouveau
执行命令linux
$ sudo update-initramfs -u
而后重启机器。执行以下命令,确认一下是否关闭。若是什么都没显示,表示已经删除。ubuntu
$ lsmod | grep nouveau
ctrl+alt+F1进入tty1控制台,输入命令:api
$ sudo service lightdm stop //关闭桌面服务 $ cd Downloads/ //进入下载的驱动所在路径 /* 安装显卡驱动,参数解释 * -no-x-check 关闭x服务器 * -no-nouveau-check 关闭自带显卡驱动 * -no-opengl-files 关闭OpenGl服务,不然会出现重复登陆的状况 */ $ sudo ./NVIDIA-Linux-x86_64-384.111.run -no-x-check -no-nouveau-check -no-opengl-files
接下来进入安装界面,首先要accept证书,后面的选项选择默认的就好。
查看是否安装成功:bash
$ nvidia-smi
若是安装成功,应该如图1:服务器
版本 | Python版本 | 编译器 | CUDA最低版本 | cuDNN最低版本 |
---|---|---|---|---|
tensorflow_gpu-1.13.0 | 2.七、 3.3~3.6 | 4.8 | 10.0 | 7.4 |
tensorflow_gpu-1.5.0 ~1.12.0 | 2.七、 3.3~3.6 | 4.8 | 9 | 7 |
tensorflow_gpu-1.3.0 ~1.3.0 | 2.七、 3.3~3.6 | 4.8 | 8 | 6 |
tensorflow_gpu-1.0.0 ~1.2.0 | 2.七、 3.3~3.6 | 4.8 | 8 | 5.1 |
进入官网下载cuda toolkit 8.0(或者直接google cuda 8.0能够直接进入),选择电脑配置对应的版本,选择runfile类型的文件,如图2。app
下载成功后,执行命令:ide
$ sudo sh cuda_8.0.61_375.26_linux.run
而后进入安装,一开始出现的一大堆文字都是End User License Agreement,能够ctrl+c跳过,在随后的协议选择accept协议。注意,在Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 375.26?选择no,由于咱们已经安装过nvidia驱动了。
具体选项以下:学习
Logging to /tmp/cuda_install_32359.log Using more to view the EULA. End User License Agreement -------------------------- Preface ------- The following contains specific license terms and conditions for four separate NVIDIA products. By accepting this agreement, you agree to comply with all the terms and conditions applicable to the specific product(s) included herein. NVIDIA CUDA Toolkit Description The NVIDIA CUDA Toolkit provides command-line and graphical tools for building, debugging and optimizing the performance of applications accelerated by NVIDIA GPUs, runtime and math libraries, and documentation including programming guides, --More--(0%) Do you accept the previously read EULA? accept/decline/quit: accept Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 375.26? (y)es/(n)o/(q)uit: n Install the CUDA 8.0 Toolkit? (y)es/(n)o/(q)uit: y Enter Toolkit Location [ default is /usr/local/cuda-8.0 ]: Do you want to install a symbolic link at /usr/local/cuda? (y)es/(n)o/(q)uit: y Install the CUDA 8.0 Samples? (y)es/(n)o/(q)uit: y Enter CUDA Samples Location [ default is /home/ai]: Installing the CUDA Toolkit in /usr/local/cuda-8.0 ... Missing recommended library: libXmu.so Installing the CUDA Samples in /home/ai ... Copying samples to /home/kinny/NVIDIA_CUDA-8.0_Samples now... Finished copying samples.
在~/.bashrc 的最后添加:ui
export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} export CUDA_HOME=/usr/local/cuda
添加完必定要更新一下,不然会出现安装成功可是没法使用gpu的状况。
$ source ~/.bashrc
进入官网下载cuda toolkit 5.1,须要注册才能使用。下载对应的文件,我这里的下载选项为Download cuDNN v5.1 (Jan 20, 2017), for CUDA 8.0,下载下来的文件名为cudnn-8.0-linux-x64-v5.1.tgz。
解压文件
$ tar xvzf cudnn-8.0-linux-x64-v5.1.tgz
而后将库和头文件copy到cuda目录(必定是你本身安装的目录如/usr/local/cuda-8.0):
$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include $ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
接下来修改文件的访问权限
$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
这里安装的是tensorflow1.0.1-gpu,下载连接:Download
$ sudo apt-get install python-pip python-dev
$ sudo pip install --upgrade ttensorflow_gpu-1.0.1-cp27-none-linux_x86_64.whl
1.tensorflow import error