这篇文章中使用的数据集是一个足球球员各项技能及其身价的csv表,包含了60多个字段。数据集下载连接:数据集php
这个函数能够输出读入表格的一些具体信息。这对于加快数据预处理很是有帮助。app
import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv('dataset/soccer/train.csv') print(data.info())
<class 'pandas.core.frame.DataFrame'> RangeIndex: 10441 entries, 0 to 10440 Data columns (total 65 columns): id 10441 non-null int64 club 10441 non-null int64 league 10441 non-null int64 birth_date 10441 non-null object height_cm 10441 non-null int64 weight_kg 10441 non-null int64 nationality 10441 non-null int64 potential 10441 non-null int64 ... dtypes: float64(12), int64(50), object(3) memory usage: 5.2+ MB None
import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv('dataset/soccer/train.csv') print(data.query('lw>cf')) # 这两个方法是等价的 print(data[data.lw > data.cf]) # 这两个方法是等价的
这个函数能够统计某一列中不一样值出现的频率。函数
import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv('dataset/soccer/train.csv') print(data.work_rate_att.value_counts())
Medium 7155 High 2762 Low 524 Name: work_rate_att, dtype: int64
按照某一列的数值进行排序后输出。code
import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv('dataset/soccer/train.csv') print(data.sort_values(['sho']).head(5))
import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv('dataset/soccer/train.csv') potential_mean = data['potential'].groupby(data['nationality']).mean().head(5) print(potential_mean)
nationality 1 74.945338 2 72.914286 3 67.892857 4 69.000000 5 70.024242 Name: potential, dtype: float64
import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv('dataset/soccer/train.csv') potential_mean = data['potential'].head(20).groupby([data['nationality'], data['club']]).mean() print(potential_mean)
nationality club 1 148 76 461 72 5 83 64 29 593 68 43 213 67 51 258 62 52 112 68 54 604 81 63 415 70 64 359 74 78 293 73 90 221 70 96 80 72 101 458 67 111 365 64 379 83 584 65 138 9 72 155 543 72 163 188 71 Name: potential, dtype: int64
值得注意的是,在分组函数后面使用一个size()函数能够返回带有分组大小的结果。排序
potential_mean = data['potential'].head(200).groupby([data['nationality'], data['club']]).size()
nationality club 1 148 1 43 213 1 51 258 1 52 112 1 54 604 1 78 293 1 96 80 1 101 458 1 155 543 1 163 188 1 Name: potential, dtype: int64
这个函数通常在groupby函数以后使用。get
import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv('dataset/soccer/train.csv') potential_mean = data['potential'].head(10).groupby(data['nationality']).agg(['max', 'min']) print(potential_mean)
max min nationality 1 76 76 43 67 67 51 62 62 52 68 68 54 81 81 78 73 73 96 72 72 101 67 67 155 72 72 163 71 71
将某一个函数应用到某一列或者某一行上,能够极大加快处理速度。pandas
import pandas as pd import matplotlib.pyplot as plt # 返回球员出生日期中的年份 def birth_date_deal(birth_date): year = birth_date.split('/')[2] return year data = pd.read_csv('dataset/soccer/train.csv') result = data['birth_date'].apply(birth_date_deal).head() print(result)
0 96 1 84 2 99 3 88 4 80 Name: birth_date, dtype: object
固然若是使用lambda函数的话,代码会更加简洁:it
data = pd.read_csv('dataset/soccer/train.csv') result = data['birth_date'].apply(lambda x: x.split('/')[2]).head() print(result)