转【实战体验几种MySQLCluster方案】

实战体验几种MySQLCluster方案java

1.背景python

MySQL的cluster方案有不少官方和第三方的选择,选择多就是一种烦恼,所以,咱们考虑MySQL数据库知足下三点需求,考察市面上可行的解决方案:mysql

高可用性:主服务器故障后可自动切换到后备服务器可伸缩性:可方便经过脚本增长DB服务器负载均衡:支持手动把某公司的数据请求切换到另外的服务器,可配置哪些公司的数据服务访问哪一个服务器sql

须要选用一种方案知足以上需求。在MySQL官方网站上参考了几种解决方案的优缺点:数据库

                       

 

综合考虑,决定采用MySQL Fabric和MySQL Cluster方案,以及另一种较成熟的集群方案Galera Cluster进行预研。服务器

2.MySQLCluster

简介:网络

MySQL Cluster 是MySQL 官方集群部署方案,它的历史较久。支持经过自动分片支持读写扩展,经过实时备份冗余数据,是可用性最高的方案,声称可作到99.999%的可用性。架构

架构及实现原理:并发

 

MySQL cluster主要由三种类型的服务组成:负载均衡

NDB Management Server:管理服务器主要用于管理cluster中的其余类型节点(Data Node和SQL Node),经过它能够配置Node信息,启动和中止Node。 SQL Node:在MySQL Cluster中,一个SQL Node就是一个使用NDB引擎的mysql server进程,用于供外部应用提供集群数据的访问入口。Data Node:用于存储集群数据;系统会尽可能将数据放在内存中。

 

缺点及限制:

 

对须要进行分片的表须要修改引擎Innodb为NDB,不须要分片的能够不修改。NDB的事务隔离级别只支持Read Committed,即一个事务在提交前,查询不到在事务内所作的修改;而Innodb支持全部的事务隔离级别,默认使用Repeatable Read,不存在这个问题。外键支持:虽然最新的Cluster版本已经支持外键,但性能有问题(由于外键所关联的记录可能在别的分片节点中),因此建议去掉全部外键。Data Node节点数据会被尽可能放在内存中,对内存要求大。

数据库系统提供了四种事务隔离级别:
A.Serializable(串行化):一个事务在执行过程当中彻底看不到其余事务对数据库所作的更新(事务执行的时候不容许别的事务并发执行。事务串行化执行,事务只能一个接着一个地执行,而不能并发执行。)。
B.Repeatable Read(可重复读):一个事务在执行过程当中能够看到其余事务已经提交的新插入的记录,可是不能看到其余其余事务对已有记录的更新。
C.Read Commited(读已提交数据):一个事务在执行过程当中能够看到其余事务已经提交的新插入的记录,并且能看到其余事务已经提交的对已有记录的更新。
D.Read Uncommitted(读未提交数据):一个事务在执行过程当中能够看到其余事务没有提交的新插入的记录,并且能看到其余事务没有提交的对已有记录的更新。

3.MySQL Fabric

 

简介:

为了实现和方便管理MySQL 分片以及实现高可用部署,Oracle在2014年5月推出了一套为各方寄予厚望的MySQL产品 -- MySQL Fabric, 用来管理MySQL 服务,提供扩展性和容易使用的系统,Fabric当前实现了两个特性:高可用和使用数据分片实现可扩展性和负载均衡,这两个特性能单独使用或结合使用。

MySQL Fabric 使用了一系列的python脚本实现。

应用案例:因为该方案在去年才推出,目前在网上暂时没搜索到有大公司的应用案例。

 

架构及实现原理:

Fabric支持实现高可用性的架构图以下:


Fabric使用HA组实现高可用性,其中一台是主服务器,其余是备份服务器, 备份服务器经过同步复制实现数据冗余。应用程序使用特定的驱动,链接到Fabric 的Connector组件,当主服务器发生故障后,Connector自动升级其中一个备份服务器为主服务器,应用程序无需修改。

Fabric支持可扩展性及负载均衡的架构以下:

 

 

 

使用多个HA 组实现分片,每一个组之间分担不一样的分片数据(组内的数据是冗余的,这个在高可用性中已经提到)
应用程序只需向connector发送query和insert等语句,Connector经过MasterGroup自动分配这些数据到各个组,或从各个组中组合符合条件的数据,返回给应用程序。

缺点及限制:
影响比较大的两个限制是:

自增加键不能做为分片的键;事务及查询只支持在同一个分片内,事务中更新的数据不能跨分片,查询语句返回的数据也不能跨分片。
 

测试高可用性

服务器架构:

功能

IP

Port

Backing store(保存各服务器配置信息)

200.200.168.24

3306

Fabric 管理进程(Connector)

200.200.168.24

32274

HA Group 1 -- Master

200.200.168.23

3306

HA Group 1 -- Slave

200.200.168.25

3306

 

安装过程省略,下面讲述如何设置高可用组、添加备份服务器等过程

首先,建立高可用组,例如组名group_id-1,命令:

mysqlfabric group create group_id-1

往组内group_id-1添加机器200.200.168.25和200.200.168.23:

mysqlfabric group add group_id-1 200.200.168.25:3306

mysqlfabric group add group_id-1 200.200.168.23:3306

而后查看组内机器状态:

因为未设置主服务器,两个服务的状态都是SECONDARY
提高其中一个为主服务器:
mysqlfabric group promote group_id-1 --slave_id 00f9831f-d602-11e3-b65e-0800271119cb
而后再查看状态:

 

设置成主服务器的服务已经变成Primary。
另外,mode属性表示该服务器是可读写(READ_WRITE),或只读(READ_ONLY),只读表示能够分摊查询数据的压力;只有主服务器能设置成可读写(READ_WRITE)。
这时检查25服务器的slave状态:

 

能够看到它的主服务器已经指向23


而后激活故障自动切换功能:
mysqlfabric group activate group_id-1
激活后便可测试服务的高能够性
首先,进行状态测试:
中止主服务器23

 

而后查看状态:

 

能够看到,这时将25自动提高为主服务器。
但若是将23恢复起来后,须要手动从新设置23为主服务器。


实时性测试:
目的:测试在主服务更新数据后,备份服务器多久才显示这些数据
测试案例:使用java代码建链接,往某张表插入100条记录,看备份服务器多久才能同步这100条数据
测试结果:
表中原来有101条数据,运行程序后,查看主服务器的数据条数:

 

可见主服务器固然当即获得更新。

查看备份服务器的数据条数:

 

但备份服务器等待了1-2分钟才同步完成(能够看到fabric使用的是异步复制,这是默认方式,性能较好,主服务器不用等待备份服务器返回,但同步速度较慢)


对于从服务器同步数据稳定性问题,有如下解决方案:

使用半同步增强数据一致性:异步复制能提供较好的性能,但主库只是把binlog日志发送给从库,动做就结束了,不会验证从库是否接收完毕,风险较高。半同步复制会在发送给从库后,等待从库发送确认信息后才返回。能够设置从库中同步日志的更新方式,从而减小从库同步的延迟,加快同步速度。 安装半同步复制:
在mysql中运行
install plugin rpl_semi_sync_master soname 'semisync_master.so';
install plugin rpl_semi_sync_slave soname 'semisync_slave.so';
SET GLOBAL rpl_semi_sync_master_enabled=ON;
SET GLOBAL rpl_semi_sync_slave_enabled=ON;
修改my.cnf :
rpl_semi_sync_master_enabled=1
rpl_semi_sync_slave_enabled=1
sync_relay_log=1
sync_relay_log_info=1
sync_master_info=1

稳定性测试:
测试案例:使用java代码建链接,往某张表插入1w条记录,插入过程当中将其中的master服务器停了,看备份服务器是否有这1w笔记录
测试结果,中止主服务器后,java程序抛出异常:

 

 

但这时再次发送sql命令,能够成功返回。证实只是当时的事务失败了。链接切换到了备份服务器,仍然可用。
翻阅了mysql文档,有章节说明了这个问题:

 

里面提到:当主服务器当机时,咱们的应用程序虽然是不需作任何修改的,但在主服务器被备份服务器替换前,某些事务会丢失,这些能够做为正常的mysql错误来处理。

数据完整性校验:
测试主服务器中止后,备份服务器是否可以同步全部数据。
重启了刚才中止主服务器后,查看记录数

 

 

能够看到在插入1059条记录后被中止了。

如今看看备份服务器的记录数是多少,看看在主服务器当机后是否全部数据都能同步过来

 

 

大约通过了几十秒,才同步完,数据虽然不是当即同步过来,但没有丢失。

1.2、分片:如何支持可扩展性和负载均衡

fabric分片简介:当一台机器或一个组承受不了服务压力后,能够添加服务器分摊读写压力,经过Fabirc的分片功能能够将某些表中数据分散存储到不一样服务器。咱们能够设定分配数据存储的规则,经过在表中设置分片key设置分配的规则。另外,有些表的数据可能并不须要分片存储,须要将整张表存储在同一个服务器中,能够将设置一个全局组(Global Group)用于存储这些数据,存储到全局组的数据会自动拷贝到其余全部的分片组中。



 

4.Galera Cluster

 

简介:

Galera Cluster号称是世界上最早进的开源数据库集群方案

 

主要优势及特性:

真正的多主服务模式:多个服务能同时被读写,不像Fabric那样某些服务只能做备份用同步复制:无延迟复制,不会产生数据丢失热备用:当某台服务器当机后,备用服务器会自动接管,不会产生任何当机时间自动扩展节点:新增服务器时,不需手工复制数据库到新的节点支持InnoDB引擎对应用程序透明:应用程序不需做修改

 

 

架构及实现原理:
首先,咱们看看传统的基于mysql Replication(复制)的架构图:

 

Replication方式是经过启动复制线程从主服务器上拷贝更新日志,让后传送到备份服务器上执行,这种方式存在事务丢失及同步不及时的风险。Fabric以及传统的主从复制都是使用这种实现方式。



而Galera则采用如下架构保证事务在全部机器的一致性:

 

客户端经过Galera Load Balancer访问数据库,提交的每一个事务都会经过wsrep API 在全部服务器中执行,要不全部服务器都执行成功,要不就全部都回滚,保证全部服务的数据一致性,并且全部服务器同步实时更新。


缺点及限制:

因为同一个事务须要在集群的多台机器上执行,所以网络传输及并发执行会致使性能上有必定的消耗。全部机器上都存储着相同的数据,全冗余。若一台机器既做为主服务器,又做为备份服务器,出现乐观锁致使rollback的几率会增大,编写程序时要当心。不支持的SQL:LOCK / UNLOCK TABLES / GET_LOCK(), RELEASE_LOCK()…不支持XA Transaction
目前基于Galera Cluster的实现方案有三种:Galera Cluster for MySQL、Percona XtraDB Cluster、MariaDB Galera Cluster。
咱们采用较成熟、应用案例较多的Percona XtraDB Cluster。
应用案例:
超过2000多家外国企业使用:

 

 

 

包括:



 

集群部署架构:

功能

IP

Port

Backing store(保存各服务器配置信息)

200.200.168.24

3306

Fabric 管理进程(Connector)

200.200.168.24

32274

HA Master 1

200.200.168.24

3306

HA Master 2

200.200.168.25

3306

HA Master 3

200.200.168.23

3306

 

4.1、测试数据同步

在机器24上建立一个表:

 

当即在25 中查看,可见已被同步建立

 

 

使用Java代码在24服务器上插入100条记录

 

当即在25服务器上查看记录数

 

可见数据同步是当即生效的。

4.2、测试添加集群节点
添加一个集群节点的步骤很简单,只要在新加入的机器上部署好Percona XtraDB Cluster,而后启动,系统将自动将现存集群中的数据同步到新的机器上。

如今为了测试,先将其中一个节点服务中止:

 

而后使用java代码在集群上插入100W数据

 

查看100w数据的数据库大小:

 

这时启动另一个节点,启动时即会自动同步集群的数据:

 

启动只需20秒左右,查看数据大小一致,查看表记录数,也已经同步过来

 

 

5.对比总结

 

 

 

MySQL Fabric

Galera Cluster

使用案例

2014年5月才推出,目前在网上暂时没搜索到有大公司的应用案例

方案较成熟,外国多家互联网公司使用

数据备份的实时性

因为使用异步复制,通常延时几十秒,但数据不会丢失。

实时同步,数据不会丢失

数据冗余

使用分片,经过设置分片key规则能够将同一张表的不一样数据分散在多台机器中

每一个节点全冗余,没有分片

高可用性

经过Fabric Connector实现主服务器当机后的自动切换,但因为备份延迟,切换后可能不能当即查询数据

使用HAProxy实现。因为实时同步,切换的可用性更高。

可伸缩性

添加节点后,须要先手工复制集群数据

扩展节点十分方便,启动节点时自动同步集群数据,100w数据(100M)只需20秒左右

负载均衡

经过HASharding实现

使用HAProxy实现负载均衡

程序修改

须要切换成jdbc:mysql:fabric的jdbc类和url

程序无需修改

性能对比

使用java直接用jdbc插入100条记录,大概2000+ms

跟直接操做mysql同样,直接用jdbc插入100条记录,大概600ms

6.实践应用

综合考虑上面方案的优缺点,咱们比较偏向选择Galera 若是只有两台数据库服务器,考虑采用如下数据库架构实现高可用性、负载均衡和动态扩展:



 

 

若是三台机器能够考虑:

 

相关文章
相关标签/搜索