官方介绍,XLA(加速线性代数)是一种针对特定领域的线性代数编译器,可以优化 TensorFlow 计算,它能够提升服务器和移动平台的运行速度,并改进内存使用状况和可移植性。XLA 框架是实验性框架,仍处于积极开发阶段。python
因而乎,我就想看看XLA对BERT模型的加速的状况。我选了BERT的中文模型,在情感分类任务上作测试。git
import tensorflow as tf from transformers import * from band.dataset import ChnSentiCorp from band.progress import classification_convert_examples_to_features USE_XLA = False USE_AMP = False EPOCHS = 5 BATCH_SIZE = 16 EVAL_BATCH_SIZE = 16 TEST_BATCH_SIZE = 1 MAX_SEQ_LEN = 128 LEARNING_RATE = 3e-5 tf.config.optimizer.set_jit(USE_XLA) tf.config.optimizer.set_experimental_options({"auto_mixed_precision": USE_AMP}) dataset = ChnSentiCorp(save_path="/tmp/band") data, label = dataset.data, dataset.label dataset.dataset_information() train_number, eval_number, test_number = dataset.train_examples_num, dataset.eval_examples_num, dataset.test_examples_num tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') train_dataset = classification_convert_examples_to_features(data['train'], tokenizer, max_length=MAX_SEQ_LEN, label_list=label, output_mode="classification") valid_dataset = classification_convert_examples_to_features(data['validation'], tokenizer, max_length=MAX_SEQ_LEN, label_list=label, output_mode="classification") train_dataset = train_dataset.shuffle(100).batch(BATCH_SIZE, drop_remainder=True).repeat(EPOCHS) train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE) valid_dataset = valid_dataset.batch(EVAL_BATCH_SIZE) valid_dataset = valid_dataset.prefetch(tf.data.experimental.AUTOTUNE) config = BertConfig.from_pretrained("bert-base-chinese", num_labels=dataset.num_labels) model = TFBertForSequenceClassification.from_pretrained('bert-base-chinese', config=config) optimizer = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE, epsilon=1e-08) if USE_AMP: optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(optimizer, 'dynamic') loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy') model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) history = model.fit(train_dataset, epochs=EPOCHS, steps_per_epoch=train_number // BATCH_SIZE, validation_data=valid_dataset, validation_steps=eval_number // EVAL_BATCH_SIZE)
其中band是我本身写的一个BERT的库,还在开发中。用不用XLA只须要设置USE_XLA
便可。跑的实验结果以下:bash
不使用XLA服务器
Epoch 1/5 600/600 [==============================] - 355s 592ms/step - loss: 0.2685 - accuracy: 0.8976 - val_loss: 0.2427 - val_accuracy: 0.9142 Epoch 2/5 600/600 [==============================] - 332s 554ms/step - loss: 0.1707 - accuracy: 0.9420 - val_loss: 0.1824 - val_accuracy: 0.9258 Epoch 3/5 600/600 [==============================] - 332s 554ms/step - loss: 0.0934 - accuracy: 0.9686 - val_loss: 0.1995 - val_accuracy: 0.9383 Epoch 4/5 600/600 [==============================] - 333s 554ms/step - loss: 0.0768 - accuracy: 0.9747 - val_loss: 0.2288 - val_accuracy: 0.9442 Epoch 5/5 600/600 [==============================] - 333s 555ms/step - loss: 0.0564 - accuracy: 0.9807 - val_loss: 0.2247 - val_accuracy: 0.9408
使用XLA框架
Epoch 1/5 600/600 [==============================] - 573s 955ms/step - loss: 0.2824 - accuracy: 0.8940 - val_loss: 0.2162 - val_accuracy: 0.9192 Epoch 2/5 600/600 [==============================] - 309s 515ms/step - loss: 0.1577 - accuracy: 0.9444 - val_loss: 0.2361 - val_accuracy: 0.9233 Epoch 3/5 600/600 [==============================] - 309s 514ms/step - loss: 0.0993 - accuracy: 0.9678 - val_loss: 0.2270 - val_accuracy: 0.9333 Epoch 4/5 600/600 [==============================] - 307s 512ms/step - loss: 0.0702 - accuracy: 0.9780 - val_loss: 0.2492 - val_accuracy: 0.9300 Epoch 5/5 600/600 [==============================] - 310s 516ms/step - loss: 0.0572 - accuracy: 0.9815 - val_loss: 0.2675 - val_accuracy: 0.9300
具体运行表格以下:
| 比较 | Epoch1 | Epoch2~5 |
| :----------: | :------: | :---------------------------: |
| 不使用XLA| 355s | 332s |
| 使用XLA| 573s | 309s |测试
解释就是GPU在第一个Epoch须要完成GPU的一些初始化操做(能够理解为热身),第二个Epoch后才能视为正常运行。fetch
XLA是编译器,因此第一个Epoch在编译代码,会比较慢。优化
我没有设置运行seed,XLA只是编译,应该不会对代码运行结果产生什么影响。code
因此总结一下,XLA第一个Epoch在编译代码,因此运行时间额外的长,第一个Epoch后,表现稳定并且快于普通运行, 本实验来看大概快十分之一。orm
官方说对下降资源占用也有帮助,这个不太比如较,暂且认为是对的吧。