上一篇文章【大数据实践】游戏事件处理系统(2)——事件处理-logstash中,对日志的处理进行了讲解,其事件最终要输出到kafka集群中。所以,在本文章中,将介绍简单kafka集群的建立过程。本篇文章完成后,系统应该可以跑通日志收集、处理及输出到kafka,并能使用kafka的工具验证消息的正确性。html
启动命令:java
bin/zookeeper-server-start.sh config/zookeeper.properties
zookeeper.properties
配置文件中, 主要配置参数为:node
# the directory where the snapshot is stored. dataDir=/tmp/zookeeper # the port at which the clients will connect clientPort=2181 # disable the per-ip limit on the number of connections since this is a non-production config maxClientCnxns=0
dataDir
:存放内存数据库镜像和更新数据库的事务日志(transaction log)的目录。clientPort
:zookeeper服务的端口号。maxClientCnxns
:每一个ip链接zookeeper时链接数的限制,若是不设置或设为0时,表示链接数没有限制。注意:kafka的broker链接也计算在内,所以,若是maxClientCnxns = 1
,那么不能在同一台机器上即启动kafka server链接zookeeper,又启动kafka producer来链接。启动命令:数据库
bin/kafka-server-start.sh config/server.properties
执行成功后,即启动了一个broker(代理)
,其中server.properties文件中对该broker
作了配置,主要有:apache
############################# Server Basics ############################# # The id of the broker. This must be set to a unique integer for each broker. # 代理ID,每一个代理的ID必须是惟一的 broker.id=0 ############################# Socket Server Settings ############################# # The address the socket server listens on. It will get the value returned from # java.net.InetAddress.getCanonicalHostName() if not configured. # FORMAT: # listeners = listener_name://host_name:port # EXAMPLE: # listeners = PLAINTEXT://your.host.name:9092 # listeners=PLAINTEXT://:9092 # 若是不设置,则默认的java.net.InetAddress.getCanonicalHostName()获得的主机名,默认9092端口和PLAINTEXT协议。 # 协议还有PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL等。 listeners=PLAINTEXT://localhost:9092 # Hostname and port the broker will advertise to producers and consumers. If not set, # it uses the value for "listeners" if configured. Otherwise, it will use the value # returned from java.net.InetAddress.getCanonicalHostName(). #advertised.listeners=PLAINTEXT://your.host.name:9092 # 通知给生成者和消费者的监听地址,须要和listeners同样。若是不配置该选项,则默认会将上面 # listeners配置的地址发送给生产者和消费者 advertised.listeners=PLAINTEXT://localhost:9092 # Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details ## 安全协议 #listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL # The number of threads that the server uses for receiving requests from the network and sending responses to the network # 用于接收网络请求以及发送网络请求的线程数。 num.network.threads=3 # The number of threads that the server uses for processing requests, which may include disk I/O # 用于处理请求(可能包含韩磁盘I/O处理)的线程数。 num.io.threads=8 # The send buffer (SO_SNDBUF) used by the socket server # socket发送缓冲区大小(字节数),默认100kb socket.send.buffer.bytes=102400 # The receive buffer (SO_RCVBUF) used by the socket server # socket接收缓冲区大小(字节数),默认100kb socket.receive.buffer.bytes=102400 # The maximum size of a request that the socket server will accept (protection against OOM) # 为防止OutOfMemery异常而设置的每一个请求最大数据大小,默认100Mb。 socket.request.max.bytes=104857600 ############################# Log Basics ############################# # 日志的基本设置 # A comma separated list of directories under which to store log files # kafka接收到日志(消息)后,这些日志存放的目录(而不是kafka服务输入的日志)。 # 能够指定多个目录,中间用逗号分隔。 log.dirs=/tmp/kafka-logs # The default number of log partitions per topic. More partitions allow greater # parallelism for consumption, but this will also result in more files across # the brokers. # 该borker的分区数量,分区数量多,则并行高,但同时也意味着brokers之间将有更多的文件。 num.partitions=3 # The number of threads per data directory to be used for log recovery at startup and flushing at shutdown. # This value is recommended to be increased for installations with data dirs located in RAID array. # 当服务启动时,为每一个数据目录分配用于恢复数据的线程数,或者是当服务关闭时,为每一个数据目录分配用于写入数据的线程数。 # 默认为1, 但对于磁盘阵列(RAID array),建议增长该值的大小。 num.recovery.threads.per.data.dir=1 ############################# Internal Topic Settings ############################# # 内部的主题设置,卡夫卡主题管理相关的配置项。 # The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state" # For anything other than development testing, a value greater than 1 is recommended for to ensure availability such as 3. offsets.topic.replication.factor=1 transaction.state.log.replication.factor=1 transaction.state.log.min.isr=1 ############################# Log Flush Policy ############################# ## 日志写入到磁盘文件的策略 ## 配置的时候,须要在性能、可靠性和数据吞吐量之间进行权衡: ## 1. 可靠性:若是不使用备份,不将数据flush到磁盘,可能致使数据丢失。 ## 2. 延迟:若是消息记录数设置的太大,可能致使一次要flush的数据太多而形成性能瓶颈。 ## 3. 吞吐量:将数据flush到磁盘一般是最昂贵的操做,若是设置的时间间隔过小,可能带来过多寻道。 # Messages are immediately written to the filesystem but by default we only fsync() to sync # the OS cache lazily. The following configurations control the flush of data to disk. # There are a few important trade-offs here: # 1. Durability: Unflushed data may be lost if you are not using replication. # 2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush. # 3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks. # The settings below allow one to configure the flush policy to flush data after a period of time or # every N messages (or both). This can be done globally and overridden on a per-topic basis. # The number of messages to accept before forcing a flush of data to disk # 每当消息记录数达到10000时flush一次数据到磁盘 #log.flush.interval.messages=10000 # The maximum amount of time a message can sit in a log before we force a flush # 每间隔1000毫秒flush一次数据到磁盘 #log.flush.interval.ms=1000 ############################# Log Retention Policy ############################# ## 日志文件保留策略 ## 1. 每隔一段时间删除 ## 2. 当日志达到必定大小的时候被删除 ## 当达到以上任意一条,则日志被删除 # The following configurations control the disposal of log segments. The policy can # be set to delete segments after a period of time, or after a given size has accumulated. # A segment will be deleted whenever *either* of these criteria are met. Deletion always happens # from the end of the log. # The minimum age of a log file to be eligible for deletion due to age # 默认日志文件保留时间为1周 log.retention.hours=168 # A size-based retention policy for logs. Segments are pruned from the log unless the remaining # segments drop below log.retention.bytes. Functions independently of log.retention.hours. # 保留文件大小,默认保留最近的1G。 #log.retention.bytes=1073741824 # The maximum size of a log segment file. When this size is reached a new log segment will be created. # 日志文件最大大小,超过该大小,将会新建另一个日志文件。 # topic每一个分区的最大文件大小,一个topic的大小限制 = 分区数*log.retention.bytes。-1表示没有大小限。 log.segment.bytes=1073741824 # The interval at which log segments are checked to see if they can be deleted according # to the retention policies # 日志文件的检查周期,以判断是否达处处理策略规定的条件 log.retention.check.interval.ms=300000 ############################# Zookeeper ############################# ## Zookeeper相关设置 # Zookeeper connection string (see zookeeper docs for details). # This is a comma separated host:port pairs, each corresponding to a zk # server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002". # You can also append an optional chroot string to the urls to specify the # root directory for all kafka znodes. ## 链接到zookeeper集群,使用逗号分隔各个zookeeper服务的ip:port对。 zookeeper.connect=localhost:2181 # Timeout in ms for connecting to zookeeper ## ZooKeeper的链接超时时间 zookeeper.connection.timeout.ms=6000 ############################# Group Coordinator Settings ############################# ## 组协调者相关设置 # The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance. # The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms. # The default value for this is 3 seconds. # We override this to 0 here as it makes for a better out-of-the-box experience for development and testing. # However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup. ## 空消费组延时时间,设为0是为了方便开发,实际发布生成线中配置为3秒更好。 group.initial.rebalance.delay.ms=0
从这个配置文件中,大概能够窥探到kafka有的一些功能,里面不少配置本身也不是很懂,后续再专门研究一下。json
若是只是简单地试验尝试,使用下面几个配置就能够了:bootstrap
复制server.properties文件为server-1.propertis,修改配置,如:segmentfault
执行启动命令:安全
bin/kafka-server-start.sh config/server-1.properties
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 2 --partitions 2 --topic game-score
game-score
的topic。bin/kafka-topics.sh --list --zookeeper localhost:2181
能够看到信息:网络
game-score
bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic game-score
可看到以下信息:
Topic:game-score PartitionCount:2 ReplicationFactor:2 Configs: Topic: game-score Partition: 0 Leader: 1 Replicas: 1,0 Isr: 1,0 Topic: game-score Partition: 1 Leader: 0 Replicas: 0,1 Isr: 0,1
leader
:表示当前指定的负责全部读和写的partition(分区),每一个分区都有可能被选为leader。replicas
:表示保存副本的结点列表,无论他们是否为leader结点,也无论他们是否存活。Isr
:in-sync replicas的简写,表示存活且副本都已同步的的broker集合,是replicas的子集。bin/kafka-topics.sh --delete --zookeeper localhost:2181 --topic game-score
并不会真正删除,而是标记为删除:
Topic game-score is marked for deletion. Note: This will have no impact if delete.topic.enable is not set to true.
bin/kafka-topics.sh --zookeeper master:2181 --alter --topic game-score --partitions 2
--alter
命令修改--replication-factor
。bin/kafka-run-class.sh kafka.tools.ConsumerOffsetChecker --group testgroup --topic test0 --zookeeper 127.0.0.1:2181
启动一个消费者,用于查看消息是否到达kafka集群:
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic game-score --from-beginning
该命令会将消息dump出来,显示在控制台。
要想logstash将消息发送到kafka集群中,须要在logstash的output模块中使用kafka插件。
配置以下:
output { kafka{ # 主题ID topic_id => "game-score" # kafka服务的地址 bootstrap_servers => "127.0.0.1:9092" # 必定要注明输出格式 codec => "json" } }
配置好以后,将filebeat
,logstash
,kafka
都启动好,往监控日志文件中新增日志,应该就能在kafka消费者控制台看到消息了。
这里贴一下成果,以示对本身的鼓励:
> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic game-score --from-beginning {"bet_count":"1","room_id":"002","score_type":"balance","game_time":"14:26:37","desk_id":"512","game_date":"2015-11-02","game_id":"2015-11-02_14:26:37_ÐÂÊÖÇø_1_002_512","game":"PDK","beat":{"name":"admindeMacBook-Pro-2.local","version":"6.2.4","hostname":"admindeMacBook-Pro-2.local"},"tax":0,"time":"2015-11-02 14:26:54,355","tags":["beats_input_codec_plain_applied"],"offset":21444,"users":[{"username":"ly6","win":15}],"bet_name":"ÐÂÊÖÇø","prospector":{"type":"log"},"source":"/Users/admin/Documents/workspace/elk/filebeat-6.2.4-darwin-x86_64/hjd_IScoreService.log"}
pom.xml文件中,加入下依赖:
<dependencies> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>1.0.1</version> </dependency> </dependencies>
类GameScoreConsumer.java
以下:
package consumers; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import java.util.Collections; import java.util.Properties; public class GameScoreConsumer { public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("group.id", "game-score-consumers"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(props); consumer.subscribe(Collections.singletonList("game-score")); while (true) { ConsumerRecords<String, String> records = consumer.poll(1000); for (ConsumerRecord<String, String> record : records) { System.out.println("Received message: (" + record.key() + ", " + record.value() + ") at offset " + record.offset()); } } } }
启动,在日志文件中加入新的日志,该消费者便可接收到相应的信息。
至此,从日志收集、处理到保存到消息中间件kafka的整个流程都已经走通。【大数据实践】游戏事件处理系统
系列文章主要更倾向于试验,所以对深一层的理论研究和介绍不是不少,后面可能开另外的系列来说。