实现:
1. 内部采用数组的方式。
1.1 添加元素,会每次校验容量是否知足, 扩容规则有两种,1.增长扩容补偿的长度,2.按照现有数组长度翻一倍。容量上限是Integer.MAX_VALUE。 copy使用Arrays.copy的api
1.2 删除元素
1.2.1 经过对象删除。遍历数组,删除第一个匹配的对象
1.2.3 经过下标删除。判断下标是否越界。
使用 System.arraycopy进行copy, 并将元素的最后一位设置为null.供gc回收
2. 内部是同步[modCount]
2.1 ArrayList数据结构变化的时候,都会将modCount++。
2.2 采用Iterator遍历的元素, next()会去检查集合是否被修改[checkForComodification],若是集合变动会抛出异常
相似于数据库层面的 乐观锁 机制。 能够经过 Iterator的api去删除元素
3. 数组结构,内部存储数据是有序的,而且数据能够为null,支持添加剧复数据
4. 线程安全的, 关于数组的增删方法都采用了synchronized标注。数据库
// 自动增加的对象数组 public class Vector<E> { private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; // 元素数组 protected Object[] elementData; // 元素长度 protected int elementCount; // 扩容步长[增加容量] protected int capacityIncrement; // 集合变动次数 private int modCount = 0; public Vector(int initialCapacity) { this(initialCapacity, 0); // 10个长度,步长为0 } public Vector() { this(10); // 默认10个长度 } public Vector(int initialCapacity, int capacityIncrement) { super(); if (initialCapacity < 0) // 初始化容量 小于0 抛异常 throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); this.elementData = new Object[initialCapacity]; // 建立指定长度数组 this.capacityIncrement = capacityIncrement; // 增加容量大小 } // 添加元素 public synchronized boolean add(E element) { modCount++; ensureCapacityHelper(elementCount + 1); // 校验当前容器容量是否知足 elementData[elementCount++] = element; return true; } public synchronized void addElement(E obj) { modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = obj; } private void ensureCapacityHelper(int minCapacity) { if (minCapacity - elementData.length > 0) // 当前下标 > 数组长度 grow(minCapacity); }
// 扩容方法 private void grow(int minCapacity) { int oldCapacity = elementData.length; int newCapacity = oldCapacity + ((capacityIncrement > 0) ? capacityIncrement : oldCapacity); // 若是步长大于0, 每次扩容步长大小,不然按数组的长度翻一倍 if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); elementData = Arrays.copyOf(elementData, newCapacity); // 拷贝原来的内容 } private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } public boolean remove(Object o) { return removeElement(o); } public synchronized E remove(int index) { modCount++; if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); E oldValue = elementData(index); int numMoved = elementCount - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--elementCount] = null; // Let gc do its work return oldValue; } // 从结尾开始查找元素 public synchronized int lastIndexOf(Object o) { return lastIndexOf(o, elementCount-1); } // 指定位置,从结尾查找元素 public synchronized int lastIndexOf(Object o, int index) { if (index >= elementCount) throw new IndexOutOfBoundsException(index + " >= "+ elementCount); if (o == null) { for (int i = index; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = index; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; } private synchronized boolean removeElement(Object obj) { if (obj == null) { for (int index = 0; index < elementCount; index++) if (elementData[index] == null) { // 删除 null fastRemove(index); return true; } } else { for (int index = 0; index < elementCount; index++) if (obj.equals(elementData[index])) { // eqals比较 fastRemove(index); return true; } } return false; } public synchronized void removeElementAt(int index) { modCount++; if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } else if (index < 0) { throw new ArrayIndexOutOfBoundsException(index); } int j = elementCount - index - 1; if (j > 0) { System.arraycopy(elementData, index + 1, elementData, index, j); } elementCount--; elementData[elementCount] = null; /* to let gc do its work */ } private void fastRemove(int index) { modCount++; int numMoved = elementCount - index - 1; // 当前size - index - 1 数组从0开始 if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); // system arraycopy elementData[--elementCount] = null; // clear to let GC do its work gc回收 数组最后一个元素设置为null } public synchronized Iterator<E> iterator() { return new Itr(); } private class Itr implements Iterator<E> { int cursor; // index of next element to return int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount; public boolean hasNext() { // Racy but within spec, since modifications are checked // within or after synchronization in next/previous return cursor != elementCount; } public E next() { synchronized (Vector.this) { checkForComodification(); int i = cursor; if (i >= elementCount) throw new NoSuchElementException(); cursor = i + 1; return elementData(lastRet = i); } } public void remove() { if (lastRet == -1) throw new IllegalStateException(); synchronized (Vector.this) { checkForComodification(); Vector.this.remove(lastRet); expectedModCount = modCount; } cursor = lastRet; lastRet = -1; } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } public synchronized E get(int index) { if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); return elementData(index); } public synchronized E elementAt(int index) { if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } return elementData(index); } @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } public int size() { return elementCount; } }