风格迁移: 在内容上尽可能与基准图像保持一致,在风格上尽可能与风格图像保持一致。python
基于keras的代码实现:网络
# coding: utf-8 from __future__ import print_function from keras.preprocessing.image import load_img, img_to_array import numpy as np from scipy.optimize import fmin_l_bfgs_b import time import argparse from scipy.misc import imsave from keras.applications import vgg19 from keras import backend as K import os from PIL import Image, ImageFont, ImageDraw, ImageOps, ImageEnhance, ImageFilter # 输入参数 parser = argparse.ArgumentParser(description='基于Keras的图像风格迁移.') # 解析器 parser.add_argument('--style_reference_image_path', metavar='ref', type=str,default = './style.jpg', help='目标风格图片的位置') parser.add_argument('--base_image_path', metavar='ref', type=str,default = './base.jpg', help='基准图片的位置') parser.add_argument('--iter', type=int, default=25, required=False, help='迭代次数') parser.add_argument('--pictrue_size', type=int, default=500, required=False, help='图片大小.') # 获取参数 args = parser.parse_args() base_image_path = args.base_image_path style_reference_image_path = args.style_reference_image_path iterations = args.iter pictrue_size = args.pictrue_size source_image = Image.open(base_image_path) source_image= source_image.resize((pictrue_size, pictrue_size)) width, height = pictrue_size, pictrue_size def save_img(fname, image, image_enhance=True): # 图像加强 image = Image.fromarray(image) if image_enhance: # 亮度加强 enh_bri = ImageEnhance.Brightness(image) brightness = 1.2 image = enh_bri.enhance(brightness) # 色度加强 enh_col = ImageEnhance.Color(image) color = 1.2 image = enh_col.enhance(color) # 锐度加强 enh_sha = ImageEnhance.Sharpness(image) sharpness = 1.2 image = enh_sha.enhance(sharpness) imsave(fname, image) return # util function to resize and format pictures into appropriate tensors def preprocess_image(image): """ 预处理图片,包括变形到(1,width, height)形状,数据归一到0-1之间 :param image: 输入一张图片 :return: 预处理好的图片 """ image = image.resize((width, height)) image = img_to_array(image) image = np.expand_dims(image, axis=0) # (width, height)->(1,width, height) image = vgg19.preprocess_input(image) # 0-255 -> 0-1.0 return image def deprocess_image(x): """ 将0-1之间的数据变成图片的形式返回 :param x: 数据在0-1之间的矩阵 :return: 图片,数据都在0-255之间 """ x = x.reshape((width, height, 3)) x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') # 以防溢出255范围 return x def gram_matrix(x): # Gram矩阵 assert K.ndim(x) == 3 if K.image_data_format() == 'channels_first': features = K.batch_flatten(x) else: features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1))) gram = K.dot(features, K.transpose(features)) return gram # 风格损失,是风格图片与结果图片的Gram矩阵之差,并对全部元素求和 def style_loss(style, combination): assert K.ndim(style) == 3 assert K.ndim(combination) == 3 S = gram_matrix(style) C = gram_matrix(combination) S_C = S-C channels = 3 size = height * width return K.sum(K.square(S_C)) / (4. * (channels ** 2) * (size ** 2)) #return K.sum(K.pow(S_C,4)) / (4. * (channels ** 2) * (size ** 2)) # 竟然和平方没有什么不一样 #return K.sum(K.pow(S_C,4)+K.pow(S_C,2)) / (4. * (channels ** 2) * (size ** 2)) # 也能用,花后面出现了叶子 def eval_loss_and_grads(x): # 输入x,输出对应于x的梯度和loss if K.image_data_format() == 'channels_first': x = x.reshape((1, 3, height, width)) else: x = x.reshape((1, height, width, 3)) outs = f_outputs([x]) # 输入x,获得输出 loss_value = outs[0] if len(outs[1:]) == 1: grad_values = outs[1].flatten().astype('float64') else: grad_values = np.array(outs[1:]).flatten().astype('float64') return loss_value, grad_values # an auxiliary loss function # designed to maintain the "content" of the # base image in the generated image def content_loss(base, combination): return K.sum(K.square(combination - base)) # the 3rd loss function, total variation loss, # designed to keep the generated image locally coherent def total_variation_loss(x,img_nrows=width, img_ncols=height): assert K.ndim(x) == 4 if K.image_data_format() == 'channels_first': a = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, 1:, :img_ncols - 1]) b = K.square(x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, :img_nrows - 1, 1:]) else: a = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :]) b = K.square(x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :]) return K.sum(K.pow(a + b, 1.25)) # Evaluator能够只须要进行一次计算就能获得全部的梯度和loss class Evaluator(object): def __init__(self): self.loss_value = None self.grads_values = None def loss(self, x): assert self.loss_value is None loss_value, grad_values = eval_loss_and_grads(x) self.loss_value = loss_value self.grad_values = grad_values return self.loss_value def grads(self, x): assert self.loss_value is not None grad_values = np.copy(self.grad_values) self.loss_value = None self.grad_values = None return grad_values # 获得须要处理的数据,处理为keras的变量(tensor),处理为一个(3, width, height, 3)的矩阵 # 分别是基准图片,风格图片,结果图片 base_image = K.variable(preprocess_image(source_image)) # 基准图像 style_reference_image = K.variable(preprocess_image(load_img(style_reference_image_path))) if K.image_data_format() == 'channels_first': combination_image = K.placeholder((1, 3, width, height)) else: combination_image = K.placeholder((1, width, height, 3)) # 组合以上3张图片,做为一个keras输入向量 input_tensor = K.concatenate([base_image, style_reference_image, combination_image], axis=0) #组合 # 使用Keras提供的训练好的Vgg19网络,不带3个全链接层 model = vgg19.VGG19(input_tensor=input_tensor,weights='imagenet', include_top=False) model.summary() # 打印出模型概况 ''' Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) (None, None, None, 3) 0 _________________________________________________________________ block1_conv1 (Conv2D) (None, None, None, 64) 1792 A _________________________________________________________________ block1_conv2 (Conv2D) (None, None, None, 64) 36928 _________________________________________________________________ block1_pool (MaxPooling2D) (None, None, None, 64) 0 _________________________________________________________________ block2_conv1 (Conv2D) (None, None, None, 128) 73856 B _________________________________________________________________ block2_conv2 (Conv2D) (None, None, None, 128) 147584 _________________________________________________________________ block2_pool (MaxPooling2D) (None, None, None, 128) 0 _________________________________________________________________ block3_conv1 (Conv2D) (None, None, None, 256) 295168 C _________________________________________________________________ block3_conv2 (Conv2D) (None, None, None, 256) 590080 _________________________________________________________________ block3_conv3 (Conv2D) (None, None, None, 256) 590080 _________________________________________________________________ block3_conv4 (Conv2D) (None, None, None, 256) 590080 _________________________________________________________________ block3_pool (MaxPooling2D) (None, None, None, 256) 0 _________________________________________________________________ block4_conv1 (Conv2D) (None, None, None, 512) 1180160 D _________________________________________________________________ block4_conv2 (Conv2D) (None, None, None, 512) 2359808 _________________________________________________________________ block4_conv3 (Conv2D) (None, None, None, 512) 2359808 _________________________________________________________________ block4_conv4 (Conv2D) (None, None, None, 512) 2359808 _________________________________________________________________ block4_pool (MaxPooling2D) (None, None, None, 512) 0 _________________________________________________________________ block5_conv1 (Conv2D) (None, None, None, 512) 2359808 E _________________________________________________________________ block5_conv2 (Conv2D) (None, None, None, 512) 2359808 _________________________________________________________________ block5_conv3 (Conv2D) (None, None, None, 512) 2359808 _________________________________________________________________ block5_conv4 (Conv2D) (None, None, None, 512) 2359808 F _________________________________________________________________ block5_pool (MaxPooling2D) (None, None, None, 512) 0 ================================================================= ''' # Vgg19网络中的不一样的名字,储存起来以备使用 outputs_dict = dict([(layer.name, layer.output) for layer in model.layers]) loss = K.variable(0.) layer_features = outputs_dict['block5_conv2'] base_image_features = layer_features[0, :, :, :] combination_features = layer_features[2, :, :, :] content_weight = 0.08 loss += content_weight * content_loss(base_image_features, combination_features) feature_layers = ['block1_conv1','block2_conv1','block3_conv1','block4_conv1','block5_conv1'] feature_layers_w = [0.1,0.1,0.4,0.3,0.1] # feature_layers = ['block5_conv1'] # feature_layers_w = [1] for i in range(len(feature_layers)): # 每一层的权重以及数据 layer_name, w = feature_layers[i], feature_layers_w[i] layer_features = outputs_dict[layer_name] # 该层的特征 style_reference_features = layer_features[1, :, :, :] # 参考图像在VGG网络中第i层的特征 combination_features = layer_features[2, :, :, :] # 结果图像在VGG网络中第i层的特征 loss += w * style_loss(style_reference_features, combination_features) # 目标风格图像的特征和结果图像特征之间的差别做为loss loss += total_variation_loss(combination_image) # 求得梯度,输入combination_image,对loss求梯度, 每轮迭代中combination_image会根据梯度方向作调整 grads = K.gradients(loss, combination_image) outputs = [loss] if isinstance(grads, (list, tuple)): outputs += grads else: outputs.append(grads) f_outputs = K.function([combination_image], outputs) evaluator = Evaluator() x = preprocess_image(source_image) img = deprocess_image(x.copy()) fname = '原始图片.png' save_img(fname, img) # 开始迭代 for i in range(iterations): start_time = time.time() print('迭代', i,end=" ") x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(), fprime=evaluator.grads, maxfun=20, epsilon=1e-7) # 一个scipy的L-BFGS优化器 print('目前loss:', min_val,end=" ") # 保存生成的图片 img = deprocess_image(x.copy()) fname = 'result_%d.png' % i end_time = time.time() print('耗时%.2f s' % (end_time - start_time)) if i%5 == 0 or i == iterations-1: save_img(fname, img, image_enhance=True) print('文件保存为', fname)
基准图像:app
风格图像:函数
合成的艺术风格图像:优化
训练时候总体的loss是3个loss的和,每一个loss都有一个系数,调整不一样的系数,对应不一样的效果。ui
如下图片分别对应内容损失系数为0.一、一、五、10的效果:lua
随着内容损失系数的增大,迭代优化会更加侧重于调整合成图像的内容,使得图像跟原始图像愈来愈接近。3d
风格损失是VGG网络5个CNN层的特征的融合,单纯增大风格损失系数对图像最终风格影响不大,如下是系数是1和100的对比:code
系数相差100倍,可是图像风格并无明显的改变。可能调整5个卷积特征不一样的比例系数会有效果。orm
如下是单纯使用第一、二、三、四、5个卷积层特征的效果:
可见 5个卷积层特征里第3和第4个卷积层对图像的风格影响较大。
如下调整第3和第4个卷积层的系数,5个系数比为1:1:1:1:1和0.5:0.5:0.4:0.4:1
增大第三、4层比例以后,图像风格更加接近风格图像。
图像差别损失衡量的是图像自己的局部特征之间的差别,系数越大,图像局部越接近,表如今图像上就是图像像素间过分天然,如下是系数是一、五、10的效果:
以上。