FutureTask源码分析笔记

主要的实现FutureTask

# FutureTask实际上运行仍是一个runnable,它对callable作了一个封装,让开发人员能够从其中获取返回值;
FutrueTask是有状态的 共7种状态,四种状态变换的可能
NEW -> COMPLETING -> EXCEPTIONAL
NEW -> CANCELLED
NEW -> COMPLETING -> NORMAL
NEW -> INTERRUPTING -> INTERRUPTED

Callable和runnable的区别

0. 经过call方法调用;
1. 有返回值
2. 能够抛异常

get结果的实现原理

1. 判断状态;
2. 非NEW,COMPLETING状态则直接 进入report返回结果;
3. 处于NEW,COMPLETING状态,则进入等待awaitDone();

3.x awaitDone 流程

3.1. 获取等待的超时时间deadline;
3.2. 进入自旋
3.3. 判断线程是否被中断:若是被中断则移出等待waiters队列;并抛出异常;
3.4. 判断FutrueTask状态:若是">COMPLETING",表明执行完成,进入report;
3.5. 判断FutrueTask状态:若是"=COMPLETING",让出CPU执行Thread.yield();
3.6. 为当前线程建立一个node节点;
3.7. 将当前线程WaitNode加入等待队列waiters中;
3.8. 判断是否超时;
3.9. 经过LockSupport.park挂起线程,等待运行许可;
4. report返回执行结果:若是一切正常就返回执行结果,不然返回Exception;

run具体执行原理以下:

1. 判断状态是否正常,避免重复执行;
2. 调用callable的call()方法;
3. 修改执行状态;保存执行结果;并通知正在等待get的线程;
## 3.x通知机制finishCompletion
3.1. 获取全部waiters的集合;
3.2. 经过cas 拿到执行权;
3.3. 循环遍历全部等待的线程,经过LockSupport.unpark 唤醒其执行;

Callable和Future的实现原理(JDK8源码分析)

1. cancel 取消执行

public boolean cancel(boolean mayInterruptIfRunning) {
    // 判断状态:只有刚建立的状况下才能取消
    // mayInterruptIfRunning:是否中断当前正在运行这个FutureTask的线程;
    if (!(state == NEW &&
          UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
              mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
        return false;
    try {    // in case call to interrupt throws exception
        // 若是要中断当前线程,则对runner发布interrupt信号;
        if (mayInterruptIfRunning) {
            try {
                Thread t = runner;
                if (t != null)
                    t.interrupt();
            } finally { // final state
                // 修改状态为:已经通知线程进行中断
                UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
            }
        }
    } finally {
        // 通知其余在等待结果的线程
        finishCompletion();
    }
    return true;
}

2. run

public void run() {
    // 判断状态及设置futuretask归属的线程
    if (state != NEW ||
        !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                    null, Thread.currentThread()))
        return;
    try {
        Callable<V> c = callable;
        if (c != null && state == NEW) {
            V result;
            boolean ran;
            try {
                // 执行Callable
                result = c.call();
                // 标记为执行成功
                ran = true;
            } catch (Throwable ex) {
                result = null;
                // 标记为执行不成功
                ran = false;
                // 设置为异常状态,并通知其余在等待结果的线程
                setException(ex);
            }
            // 若是执行成功,修改状态为正常,并通知其余在等待结果的线程
            if (ran)
                set(result);
        }
    } finally {
        // runner must be non-null until state is settled to
        // prevent concurrent calls to run()
        runner = null;
        // state must be re-read after nulling runner to prevent
        // leaked interrupts
        int s = state;
        // 若是状态为准备发起中断信号或者已经发出中断信号,则让出CPU(Thread.yield())
        if (s >= INTERRUPTING)
            handlePossibleCancellationInterrupt(s);
    }
}

3. get

public V get() throws InterruptedException, ExecutionException {
    int s = state;
    // 若是还没执行完,则等待
    if (s <= COMPLETING)
        s = awaitDone(false, 0L);
    // 经过report取结果
    return report(s);
}

3.1 report 取执行结果

private V report(int s) throws ExecutionException {
    Object x = outcome;
    // 若是一切正常,则返回x(x是callable执行的结果outcome)
    if (s == NORMAL)
        return (V)x;
    // 若是被取消,则抛出已取消异常
    if (s >= CANCELLED)
        throw new CancellationException();
    // 不然抛出执行异常
    throw new ExecutionException((Throwable)x);
}

3.2 awaitDone 等待FutureTask执行结束

private int awaitDone(boolean timed, long nanos)
    throws InterruptedException {
    // 记录等待超时的时间
    final long deadline = timed ? System.nanoTime() + nanos : 0L;
    // 多个在等待结果的线程,经过一个链表进行保存,waitNode就是每一个线程在链表中的节点;
    WaitNode q = null;
    boolean queued = false;
    // 死循环...也能够说是自旋锁同步
    for (;;) {
        // 判断当前这个调用get的线程是否被中断
        if (Thread.interrupted()) {
            // 将当前线程移出队列
            removeWaiter(q);
            throw new InterruptedException();
        }
        
        int s = state;
        // 若是状态非初创或执行完毕了,则跳出循环,经过report()取执行结果
        if (s > COMPLETING) {
            if (q != null)
                q.thread = null;
            return s;
        }
        // 若是状态等于已执行,让出CPU执行,等待状态变为正常结束
        else if (s == COMPLETING) // cannot time out yet
            Thread.yield();
        // 若是当前线程尚未建立对象的waitNode节点,则建立一个
        else if (q == null)
            q = new WaitNode();
        // 若是当前线程对应的waitNode尚未加入到等待链表中,则加入进去;
        else if (!queued)
            queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                q.next = waiters, q);
        // 若是有设置等待超时时间,则经过parkNanos挂起当前线程,等待继续执行的信号
        else if (timed) {
            nanos = deadline - System.nanoTime();
            if (nanos <= 0L) {
                removeWaiter(q);
                return state;
            }
            LockSupport.parkNanos(this, nanos);
        }
        // 经过park挂起当前线程,等待task执行结束后给它发一个继续执行的信号(unpark)
        else
            LockSupport.park(this);
    }
}

4. finishCompletion 通知全部在等待结果的线程

private void finishCompletion() {
    // assert state > COMPLETING;
    // 遍历全部正在等待执行结果的线程
    for (WaitNode q; (q = waiters) != null;) {
        if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
            for (;;) {
                Thread t = q.thread;
                if (t != null) {
                    q.thread = null;
                    // unpark,发布一个让它继续执行的“许可”
                    LockSupport.unpark(t);
                }
                WaitNode next = q.next;
                if (next == null)
                    break;
                q.next = null; // unlink to help gc
                q = next;
            }
            break;
        }
    }

    done();

    callable = null;        // to reduce footprint
}
相关文章
相关标签/搜索