这几年愈来愈多的小伙伴涌入数据分析行业,呈现出井喷现象。往往有读者和学员问我如何转行、行业发展前景和我的发展路径,我都会提醒你们你们透过现象看本质,不要只是被表面光环迷惑,这几年数据分析岗的看似的火其实依托于互联网行业、依托于各大培训机构的吹捧。sql
但实际上呢,数据分析入门并不表明成功,只是一个起点,和每一个岗位同样,作个三年五年也会有实实在在的瓶颈。好比,低水平重复的报表、取数工做会被工具和机器取代;好比,数据分析主要集中在互联网、金融、消费类行业,在其余行业还很难施展拳手;好比,在大部分公司不是核心部门,长远看会阻碍你们的发财致富路......数据库
不过,三百六十行,行行出状元,顶尖的“数据分析师”在各大行业仍是至关稀缺的,而且当下企业数据化的形势不可阻挡,机遇仍是有的,若是真心想在数据这个行业发展,不妨看看这篇文章,了解一下分析师的发展(致富)路径,对本身的职业判断有益无害。架构
回到话题,如何成为顶尖的数据分析师?
这里分享一位我朋友(老张)真实的经历,看看一个顶尖的数据分析师如何在公司内部发挥价值。机器学习
老张在一家医药公司,有一此公司在开经营分析会时发现旗下一家子公司连续多月出现亏损。总经理询问了各订单的成本、毛利数据,各部门并无拿出可靠的数据和报表,只是凭经验大概说了几个数字,分析缘由也是各类“甩锅”。工具
总经理雷霆大怒,找来财务和数据部门的老张,下令全面分析子公司经营问题,要求对经营生产数据全面透明。性能
一、了解业务,需求调研,明确问题学习
影响利润的因素十分复杂,老张本身又不了解子公司业务,因而和财务部的领导沟通,决定先将财务核算过程当中涉及到的基础数据理顺。并在这个过程当中,充分根据业务型数据分析师的工做流程,对问题进行屡次梳理和确认。优化


二、明确上意,问题分析人工智能
众多问题里,老张发现领导最关注的是订单的收率是否亏损。沿着这个思路,他发现关键的问题是:因为生产过程数据拿不到,财务没有办法实现每一个订单的核算,天然难以发现订单生产中存在的问题。spa
三、拆分问题,肯定数据、指标、报表
没有直接的数据没法分析,此时须要IT和生产部门的配合。多部门的配合更须要了解各部门能提供什么,财务部门到底须要什么成果。
因而,老张在和财务部门明确分析的需求后,帮助梳理了要分析的指标、制定了分析模型、设计了几张报表:为业务部门设计成本和损失自动核算的报表;为管理层设计毛利、损失成本等核算指标,并能下钻分析到具体生产数据状况。
而后交由IT和数据部门一块儿开发。


四、下情上达,推进业务落地
结合需求和后续的业务调研,抽取了订单盈利损失状况,异常订单状况等数据信息。和总经理和财务部门领导进行了初步讨论,数据引发了总经理的重视,开展了项目会。提炼了下图经营的关键指标项,而且将压力下放到公司综合部,生产等部门,造成平常汇报的关键指标项和预警指标。




看到这,了解这个行业的读者应该发现,老张在作的事已经远不止一个是分析师那么简单,已经有一点在推进公司数据化改革的意味。没错,这类角色咱们在业内通常定义为数据运营官,从发现问题、分析问题、解决问题,进而可以推进业务、推进管理层决策,影响公司重要部门和公司总体的经营。所谓普通数据分析师和数据运营官(或者有的公司是数据部门leader、高级商业分析师),这里偏偏是一个分水岭。
继续看看老张后面是如何作的。
五、优化数据分析成果
经过这一次项目,张同窗对老板关心的订单核算数据、生产管理数据、质量管理数据三个模块进行可视化报告展现,并将其固化成了平常的分析看板。
另外,老张还针对接单测算和实际生产设计了一套对应的流程,实现自动核算财务、生产数据指标,增长了数据的准确性,及时性。下图是“一单一核算”报表,点击制造号能够显示各类核算过程数据,核算规则。


客户收益分析。根据边际毛利,将客户进行分类统计,清楚的了解各类级别客户在公司所占的比例,为领导决策提供依据。后续又根据RFM模型将客户进行细分,将客户分类成大客户、重点客户、普通客户、问题客户等,进行针对运营。


六、持续影响,帮助子公司扭亏为盈
通过数据分析,领导的经验判断有了多方面的数据佐证,有些订单的收率确实较低,投料不规范,操做形成的损失偏多。为了不此类问题的发生,本来停滞的IT建设又开始持续投入,加大生产线上的各类业务系统部署,采集数据,监控生产物料的投放,精细化管理,让数据驱动效率的提高,成本的控制。
领导评价说:“数据分析,让我对于生产过程存在的各类问题有了比较清楚的认识,才能准确采起措施,提高企业的盈利水平”。
目前子公司基本实现了扭亏,并且每次开经营会,都会使用数据部门提供的数据报表进行生产经营分析。
目前,领导十分承认老张的能力,关键是逐步承认了数据的价值。
以上,经过数据分析助力业务部门的决策和发展,帮助公司带来实际的效益,这都是顶级数据分析师要作的事。
哪些是实际的效益,好比:
- 增效:提高数据-决策的速度,更快的指导业务。更多的若是是整个公司的数据化建设,更能提升管理效率
- 降本:数据监测到生产原料的浪费;还有自动化报表下降基层统计人员的投入。
- 监控或下降风险:金融行业的坏帐,监控尾款拖欠严重的经销商/客户,监控盈利低效甚至亏损的门店、商品;电商行业的黄牛刷单、以及各类风险值的预警等。
而不仅是跑个sql,作个报告,更况且企业搞数据化在行业内已是基本共识了。
那么,要想成为顶级数据分析师,须要具有哪些特质呢?
我的之见总结:快速定位业务问题的能力、“通百艺而专注长”的技术能力、“会讲故事、上下通吃”的表达能力、坚韧的执行力和落地能力、具有管理层的视角和思惟高度。(在具有数据分析师的基本素养上提出)
① 快速定位业务问题的能力
分析师解决的是业务的问题,对业务分析、对业务数据质疑、对业务提出改进,若是不熟悉业务,任何一个部门的专业人士都有可能挑战你。因此,你最好是深懂业务。
首先是业务的理解,业务型分析师最好是在实际业务岗位呆过或者轮岗过,因此业务转行分析师比较容易作成事。对业务的理解停留在了解或者文档层面是不够的,必定要细致到业务的目标、流程、机制、数据等充分理解。怎么说呢,这些都只能说是吃经验。
其次定位业务问题的能力,要可以依据业务逻辑,借助工具将大问题分解成小问题,并拆解成关键指标,找到对应数据,理解数据含义,制做对应分析,定位业务关键为问题,指导业务改进。这一套实际上是方法论。后面有机会细讲。


② “通百艺而专注长”的技术能力
业务型的数据分析师并不像走技术路线,须要掌握代码、机器学习、人工智能。
“通百艺而专注长”的意思是,必要的技能傍身,好比精通SQL、数据库原理、Excel/报表/BI工具技能,这都是吃饭的家伙。另外,上下游技术领域,好比数据仓库、数据架构、ETL,须要了解甚至会用。
分析师必然要和IT部门打交道(甚至有些公司就在IT部),你要知道各业务部门的数据在哪里,有哪些数据,数据怎么取,数仓什么架构什么性能,虽然说这些在大公司都有专门的工程师在负责,可是懂得多有益无害。尤为是你让IT处理个数据,常常是需求排到遥遥无期,此时若是你会取数会作简单的数据处理,不少事沟通起来顺利不少。
还有,就是数据挖掘功能,通常用SQL,EXCEL结合本身的经验来进行判断,但这种模式分析的数据维度是有限的,好比靠人很难看出3维以上数据之间的关系,必定要借助工具,这就是机器学习能够帮到你的地方,好比聚类,分类,预测等等,随着机器学习,人工智能工具使用门槛的下降,数据分析师要掌握至少一种挖掘的方法,懂得如何构建模型,尤为是在金融、运营商、互联网、零售等这些数据成熟度较高的行业。
③ “会讲故事、上下通吃”的沟通表达能力
作数据分析,不少项目须要上层来推进,而后配合的时候须要各业务部门领导去配合你理需求里数据,执行的时候又须要技术、业务整个链条。其沟通能力真的是上下通吃,既要能领会每一个人的小九九,又要能贴部门leader的冷屁股,还要会和执行的同事卖惨。
沟通本质仍是为了解决问题。明确沟通目的,逻辑清晰的表达,而后站在对方考虑知道对方要什么,沟通也没那么困难。除次以外技巧,这个就很差总结了,看你在公司的人际关系吧。
分析师还有一个重要的表达,就是汇报数据分析成果,要学会将问题和分析场景串联起来说故事,要能经过量化的数字和生动的场景来宣导数据的价值。
④ 坚韧的主观能动性和落地能力
数据分析师/部门在不少公司还处于尴尬的地位,你要想秀本身的价值或者改变只是作报表取数的低价值状态。就得主动找活干,本身去推进,就像创业同样,过程当中必定会碰壁,因此说须要“坚韧”!
落地能力说白了就是你要作成事的动机,须要智慧须要勇气须要执行力,毕竟推进数据分析结果落地是数据分析师最大的成就!
找机会。以高频刚需的痛点为缸盖,找准业务和管理层高频的数据应用场景,针对性作优化,快速体现价值,做为撬动需求的杠杆。可以抓住公司内部的机会,推荐数据分析的切入,好比新品上市、行业政策市场行情变更做为切入的拐点。
识时务。可以明白各环节的流程机制,各配合部门的利益关系,好比有的部门惟KPI论,有的部门讲究走制度,善于利用,协调困难,快速推动。
监控保障执行。有时候你分析了数据,发现了问题,但改进须要业务人员去执行。你须要和部门leader沟通,须要说服业务部门同事,才能保障你结果的执行。不少时候分析的再好,高层也拍手说好,但执行人员不买帐,你也无能。因此,保障执行还要拖动产出执行方案,并作好监控方案,保障落地执行,这件事才算真正闭环。
⑤ 具有管理层的视角和思惟高度
数据分析师所其自身所站的高度,直接决定了他进行数据分析的方向和影响力,数据分析要快速体现价值必定要会搞定上层。
所以,首先须要你可以和领导站到一个高度,能揣摩上意。知道公司的重要业务战略,业务领导关心什么,会有哪些问题和指标须要特别关注,这样你才有可能进行体系化的数据分析。
任何一个领导看到这样体系化的东西都必定会爱不释手,好比经营看板,为何很多老板喜欢看,由于这会成为他们把控全局最简便的工具。一旦领导依赖上这些数据的报表和工具,后期的分析结果和建议势必会获得他的重视,这样经过数据来推进业务发展就变得水到渠成。


最后,可能我这里提到的数据分析师已经超越了传统数据分析师的范畴,可是任何岗位在企业混,到最后都是凭价值上位,凭价值拿钱,数据分析岗尤为。
从这个角度看,数据分析只是起点,用数据驱动业务驱动企业管理,作到这个地步才是真正的价值终点(再日后,能够考虑往COO、CEO等高级经理人多向发展),所以,可以利用数据驱动思惟作成事的人才是企业顶级的数据分析师。
因此,不管你们身处什么阶段,均可以带着这样的意识,多去了解业务。看看各部门是如何开展工做的,熟悉业务流程,看看报表,主动思考和发现问题,看观察他们如何将问题转化为具体举措落地的。