JavaShuo
栏目
标签
Relationship between the Hessian and Covariance Matrix for Gaussian Random Varia
时间 2020-12-30
栏目
应用数学
繁體版
原文
原文链接
原文:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470824566.app1 考虑一个高斯随机变量θ、平均值θ´、协方差矩阵∑θ,的联合概率分布为 目标函数可以定义为上式的负对数(我们无非就是要找概率最大的点嘛) 它是线性微分方程中各分量的二次函数。通过对 θl 和 θl* 求部分偏导,可以得到在(l,l*)上的Hessian矩阵(只和
>>阅读原文<<
相关文章
1.
Relationship between APT and dpkg
2.
Covariance Matrices and Data Distributions
3.
The relationship between population distribution and venues division in Manhattan
4.
The Gaussian Processes Web Site
5.
What's the difference between →, ⊢ and ⊨ ?
6.
The trust relationship between this workstation and the primary domain failed
7.
Covariance Matrix 协方差矩阵
8.
How to find the mapping relationship between the Assignment Block in WebClient
9.
自注意机制论文学习: On the Relationship between Self-Attention and Convolutional Layers
10.
Image Processing——Gaussian filter and Bilateral filter
更多相关文章...
•
SQL BETWEEN 操作符
-
SQL 教程
•
Swift for 循环
-
Swift 教程
•
RxJava操作符(七)Conditional and Boolean
•
为了进字节跳动,我精选了29道Java经典算法题,带详细讲解
相关标签/搜索
between...and
gaussian
covariance
relationship
varia
hessian
random
matrix
between+in
action.....and
应用数学
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
ubantu 增加搜狗输入法
2.
用实例讲DynamicResource与StaticResource的区别
3.
firewall防火墙
4.
页面开发之res://ieframe.dll/http_404.htm#问题处理
5.
[实践通才]-Unity性能优化之Drawcalls入门
6.
中文文本错误纠正
7.
小A大B聊MFC:神奇的静态文本控件--初识DC
8.
手扎20190521——bolg示例
9.
mud怎么存东西到包_将MUD升级到Unity 5
10.
GMTC分享——当插件化遇到 Android P
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
Relationship between APT and dpkg
2.
Covariance Matrices and Data Distributions
3.
The relationship between population distribution and venues division in Manhattan
4.
The Gaussian Processes Web Site
5.
What's the difference between →, ⊢ and ⊨ ?
6.
The trust relationship between this workstation and the primary domain failed
7.
Covariance Matrix 协方差矩阵
8.
How to find the mapping relationship between the Assignment Block in WebClient
9.
自注意机制论文学习: On the Relationship between Self-Attention and Convolutional Layers
10.
Image Processing——Gaussian filter and Bilateral filter
>>更多相关文章<<