Codeforces Round #330 (Div. 2)——B 数学——Pasha and Phone

B. Pasha and Phone
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Pasha has recently bought a new phone jPager and started adding his friends' phone numbers there. Each phone number consists of exactly n digits.git

Also Pasha has a number k and two sequences of length n / k (n is divisible by ka1, a2, ..., an / k and b1, b2, ..., bn / k. Let's split the phone number into blocks of length k. The first block will be formed by digits from the phone number that are on positions 1, 2,..., k, the second block will be formed by digits from the phone number that are on positions k + 1, k + 2, ..., k and so on. Pasha considers a phone number good, if the i-th block doesn't start from the digit bi and is divisible by ai if represented as an integer.express

To represent the block of length k as an integer, let's write it out as a sequence c1, c2,...,ck. Then the integer is calculated as the result of the expression c1·10k - 1 + c2·10k - 2 + ... + ck.ide

Pasha asks you to calculate the number of good phone numbers of length n, for the given kai and bi. As this number can be too big, print it modulo 109 + 7.this

Input

The first line of the input contains two integers n and k (1 ≤ n ≤ 100 000, 1 ≤ k ≤ min(n, 9)) — the length of all phone numbers and the length of each block, respectively. It is guaranteed that n is divisible by k.spa

The second line of the input contains n / k space-separated positive integers — sequence a1, a2, ..., an / k (1 ≤ ai < 10k).orm

The third line of the input contains n / k space-separated positive integers — sequence b1, b2, ..., bn / k (0 ≤ bi ≤ 9).blog

Output

Print a single integer — the number of good phone numbers of length n modulo 109 + 7.ci

Sample test(s)
input
6 2
38 56 49
7 3 4
output
8
input
8 2
1 22 3 44
5 4 3 2
output
32400
Note

In the first test sample good phone numbers are: 000000, 000098, 005600, 005698, 380000, 380098, 385600, 385698.input

由于长度能够到达1e5, 若是当b[i] 为1的时候发现若是用乘积思想会超时,有一个结论,一个数为A,在1到A内被B整除的数有A/B个,本题要加上00的状况it

讨论b为0或不为0的状况

#include <cstdio>
using namespace std;
const int MAXN = 1e5;
const int MOD = 1e9 + 7;
int a[MAXN], b[MAXN];
int num[MAXN], ans[MAXN];
int main()
{

    int n, k;
    while(~scanf("%d%d", &n, &k)){
        int m = n / k;
        for(int i = 1; i <= m; i++)
            scanf("%d", &a[i]);
        for(int i = 1; i <= m; i++)
            scanf("%d", &b[i]);
        num[0] = 1;
        for(int i = 1; i <= 10; i++)
            num[i] = num[i-1] * 10;
        for(int i = 1; i <= m; i++){
            long long temp1 =  (num[k] - 1)/a[i] + 1; 
            long long temp2 = ((b[i]+1)*num[k-1] - 1)/a[i] + 1;
            if(b[i] == 0)
                ans[i] = temp1 - temp2;
            else {
                long long temp3 = (b[i]*num[k-1] - 1)/a[i] + 1;
                ans[i] = temp1 - (temp2 - temp3);
            }
        }
        long long answer = 1;
        for(int i =  1; i <= m; i++){
            answer = answer * ans[i] % MOD;
        }
        printf("%d\n", answer);
    }
    return 0;
}
相关文章
相关标签/搜索