CNN 在基于弱监督学习的图像分割中的应用

最近基于深度学习的图像分割技术一般依赖于卷积神经网络 CNN 的训练,训练过程中需要非常大量的标记图像,即一般要求训练图像中都要有精确的分割结果。 对于图像分割而言,要得到大量的完整标记过的图像非常困难,比如在 ImageNet 数据集上,有 1400 万张图有类别标记,有 50 万张图给出了 bounding box, 但是只有 4460 张图像有像素级别的分割结果。对训练图像中的每个像素做标记
相关文章
相关标签/搜索