接着 http://www.javashuo.com/article/p-ydgpuhny-nz.html 这里用Flink来实现对APP在每一个渠道的推广状况包括下载、查看、卸载等等行为的分析java
由于以前的文章都是用scala写的,这篇用纯java来实现一波,
分别演示下用aggregate 聚合方式和process 方式的实现和效果mysql
总体思路sql
一、准备好数据源: 这里用SimulatedSource 来本身随机造一批数据 二、准备数据输入样例 `MarketUserBehavior` 和输出样例`MarketViewCountResult` 三、准备环境并设置watermark时间,和指定事件时间字段为timestamp 四、进行过滤:uninstall 的行为过滤掉(根据实际状况来改) 五、根据行为和渠道进行KeyBy统计 六、设置滑动窗口1小时,每10s输出一次 七、进行聚合输出
/** * @author mafei * @date 2021/1/9 */ package com.mafei.market; import cn.hutool.core.util.RandomUtil; import org.apache.flink.api.common.functions.AggregateFunction; import org.apache.flink.api.common.functions.FilterFunction; import org.apache.flink.api.java.functions.KeySelector; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.streaming.api.TimeCharacteristic; import org.apache.flink.streaming.api.datastream.DataStreamSink; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; import org.apache.flink.streaming.api.functions.source.RichSourceFunction; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.functions.windowing.WindowFunction; import org.apache.flink.streaming.api.windowing.time.Time; import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor; import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction; import org.apache.flink.streaming.api.windowing.windows.TimeWindow; import org.apache.flink.util.Collector; import static java.lang.Thread.sleep; /** * APP市场推广分析 */ /** * 定义一个输入数据的样例类 */ class MarketUserBehavior { String userId; String behavior; String channel; Long timestamp; public MarketUserBehavior(String userId, String behavior, String channel, Long timestamp) { this.userId = userId; this.behavior = behavior; this.channel = channel; this.timestamp = timestamp; } } /** * 定义一个输出数据的类 */ class MarketViewCountResult { Long windowStart; Long windowEnd; String channel; String behavior; Long count; public MarketViewCountResult(Long windowStart, Long windowEnd, String channel, String behavior, Long count) { this.windowStart = windowStart; this.windowEnd = windowEnd; this.channel = channel; this.behavior = behavior; this.count = count; getOutput(); } public void getOutput() { /** * 为了验证效果加的 */ StringBuffer stringBuffer = new StringBuffer(); stringBuffer.append("windowsStart: " + windowStart); stringBuffer.append(" windowEnd: " + windowEnd); stringBuffer.append(" channel: " + channel); stringBuffer.append(" behavior: " + behavior); stringBuffer.append(" count: " + count); //为了验证效果,追加打印的 System.out.println(stringBuffer.toString()); } } /** * 定义一个产生随机数据源的类 */ class SimulatedSource extends RichSourceFunction<MarketUserBehavior> { /** * 是否运行的标志位,主要在cancel 方法中调用 */ Boolean running = true; /** * 定义用户行为和渠道的集合 */ String[] userBeahviors = {"view", "download", "install", "uninstall"}; String[] channels = {"dingding", "wexin", "appstore"}; Long maxRunning = 64 * 10000L; Long currentRunningCount = 0L; @Override public void run(SourceContext<MarketUserBehavior> sourceContext) throws Exception { while (running && currentRunningCount < maxRunning) { String channel = RandomUtil.randomEle(channels); String beahvior = RandomUtil.randomEle(userBeahviors); Long timestamp = System.currentTimeMillis() * 1000; String userId = RandomUtil.randomString(20); sourceContext.collect(new MarketUserBehavior(userId, beahvior, channel, timestamp)); currentRunningCount += 1; sleep(100L); } } @Override public void cancel() { running = false; } } public class MarketChannelAnalysis { public static void main(String[] args) throws Exception { StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment(); environment.setParallelism(1); environment.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); SingleOutputStreamOperator<MarketUserBehavior> dataStream = environment.addSource(new SimulatedSource()) //设置watermark时间为5秒,而且指定事件时间字段为timestamp .assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<MarketUserBehavior>(Time.seconds(5)) { @Override public long extractTimestamp(MarketUserBehavior marketUserBehavior) { return marketUserBehavior.timestamp; } }); DataStreamSink<MarketViewCountResult> result = dataStream .filter(new FilterFunction<MarketUserBehavior>() { @Override public boolean filter(MarketUserBehavior marketUserBehavior) throws Exception { return !marketUserBehavior.behavior.equals("uninstall"); } }) // .keyBy("channel", "behavior") // scala的实现方式 .keyBy(new KeySelector<MarketUserBehavior, Tuple2<String, String>>() { @Override public Tuple2<String, String> getKey(MarketUserBehavior marketUserBehavior) throws Exception { // return new String[]{marketUserBehavior.behavior, marketUserBehavior.channel}; return Tuple2.of(marketUserBehavior.behavior, marketUserBehavior.channel); } }) .timeWindow(Time.hours(1), Time.seconds(10)) //窗口大小是1小时,每10秒输出一次 .aggregate(new MyMarketChannelAnalysis(), new MyMarketChannelResult()) // .process(new MarkCountByChannel()) //用process方法也能够实现 .print(); environment.execute(); } } /** * 2种实现思路,用process的时候能够用这个方法 * process不用每来一条数据都定义怎么作,而是把对应的数据会放到内存里面,当窗口结束后进行统一处理,比较耗内存,看实际使用场景 */ class MarkCountByChannel extends ProcessWindowFunction<MarketUserBehavior, MarketViewCountResult, Tuple2<String, String>, TimeWindow> { @Override public void process(Tuple2<String, String> key, Context context, Iterable<MarketUserBehavior> iterable, Collector<MarketViewCountResult> collector) throws Exception { Long startTime = context.window().getStart(); Long endTime = context.window().getEnd(); String channel = key.f1; String behavior = key.f0; Long count = iterable.spliterator().estimateSize(); collector.collect(new MarketViewCountResult(startTime, endTime, channel, behavior, count)); } } /** * 定义聚合函数的具体操做,AggregateFunction 的3个参数: * IN,输入的数据类型: 输入已经在源头定义为 MarketUserBehavior * ACC,中间状态的数据类型:由于每次要算count数,因此是Long类型 * OUT,输出的数据类型:输出的是统计的次数,因此也是Long类型 */ class MyMarketChannelAnalysis implements AggregateFunction<MarketUserBehavior, Long, Long> { @Override public Long createAccumulator() { /** * 初始化的操做,定义次数为0 */ return 0L; } @Override public Long add(MarketUserBehavior marketUserBehavior, Long aLong) { /** * 每来一条数据作的操做,这里直接加1就好了 */ return aLong + 1; } @Override public Long getResult(Long aLong) { /** * 最终输出时调用的方法 */ return aLong; } @Override public Long merge(Long aLong, Long acc1) { /** * 这里是多个的时候用到,主要是session window时会使用 */ return aLong + acc1; } } /** * 定义输出的WindowFunction,要的参数能够点进去看 * IN:这里输入是上一步的输出窗口内add的数量,因此是Long类型 * OUT:自定义的输出结构,这里定义的是一个类,能够直接改 * KEY:分组的Key,就是keyBy 里头定义的Tuple2.of(marketUserBehavior.behavior, marketUserBehavior.channel); * W extends Window:TimeWindow * */ class MyMarketChannelResult implements WindowFunction<Long, MarketViewCountResult, Tuple2<String, String>, TimeWindow> { @Override public void apply(Tuple2<String, String> stringStringTuple2, TimeWindow window, Iterable<Long> input, Collector<MarketViewCountResult> out) { out.collect(new MarketViewCountResult(window.getStart(), window.getEnd(), stringStringTuple2.f1, stringStringTuple2.f0, input.iterator().next())); } }
代码结构及运行的效果,若是要输出es、mysql、kafka之类的直接把print换成addSink就能够了apache