线上有一个消息消费服务xxx-consumer,使用spring-kafka框架,主线程批量从消费队列(kafka)拉取交易系统生产的消息,而后提交到子线程池中挨个处理消费。java
public abstract class AbstractMessageDispatchListener implements BatchAcknowledgingMessageListener<String, Msg>, ApplicationListener<ApplicationReadyEvent> { private ThreadPoolExecutor executor; public abstract MessageWorker chooseWorker(ConsumerRecord<String, Msg> data); @Override public void onMessage(List<ConsumerRecord<String, Msg>> datas, Acknowledgment acknowledgment) { List<Future<?>> futureList = new ArrayList<>(datas.size()); try { CountDownLatch countDownLatch = new CountDownLatch(datas.size()); for (ConsumerRecord<String, Msg> data : datas) { Future<?> future = executor.submit(new Worker(data, countDownLatch)); futureList.add(future); } countDownLatch.await(20000L - 2000, TimeUnit.MILLISECONDS); long countDownLatchCount = countDownLatch.getCount(); if (countDownLatchCount > 0) { return; } acknowledgment.acknowledge(); } catch (Exception e) { logger.error("onMessage error ", e); } finally { for (Future<?> future : futureList) { if (future.isDone() || future.isCancelled()) { continue; } future.cancel(true); } } } @Override public void onApplicationEvent(ApplicationReadyEvent event) { ThreadFactoryBuilder builder = new ThreadFactoryBuilder(); builder.setNameFormat(this.getClass().getSimpleName() + "-pool-%d"); builder.setDaemon(false); executor = new ThreadPoolExecutor(12, 12 * 2, 60L, TimeUnit.SECONDS, new ArrayBlockingQueue<>(100), builder.build()); } private class Worker implements Runnable { private ConsumerRecord<String, Msg> data; private CountDownLatch countDownLatch; Worker(ConsumerRecord<String, Msg> data, CountDownLatch countDownLatch) { this.data = data; this.countDownLatch = countDownLatch; } @Override public void run() { try { MessageWorker worker = chooseWorker(data); worker.work(data.value()); } finally { countDownLatch.countDown(); } } } }
有一天早上xxx-consumer服务出现大量报警,人工排查发现30w+的消息未处理,业务日志正常,gc日志有大量Full gc,初步判断由于Full gc致使消息处理慢,大量的消息积压。spring
查看了近一个月的JVM内存信息,发现老年代内存没法被回收(9月22号的降低是由于服务有一次上线重启),初步判断发生了内存泄漏。apache
经过<jmap -dump:format=b,file=/home/work/app/xxx-consumer/logs/jmap_dump.hprof -F>命令导出内存快照,使用Memory Analyzer解析内存快照文件jmap_dump.hprof,发现有很明显的内存泄漏提示:app
进一步查看线程细节,发现建立了大量的ThreadLocalScope对象且循环引用:框架
同时咱们也看到了分布式追踪(dd-trace-java)jar包中的FakeSpan类,初步判断是dd-trace-java中自研扩展的kafka插件存在内存泄漏bug。分布式
继续查看dd-trace-java中kafka插件的代码,其处理流程以下:ide
第一批消息ui
第二批消息this
从上能够看到,主线程建立的ThreadLocalScope能被正确GC,而线程池中建立的ThreadLocalScope被循环引用,没法被正确GC,从而形成内存泄漏。spa
@AutoService(Instrumenter.class) public final class SpringKafkaConsumerInstrumentation extends Instrumenter.Configurable { @Override public AgentBuilder apply(final AgentBuilder agentBuilder) { return agentBuilder .type(hasSuperType(named("org.springframework.kafka.listener.BatchAcknowledgingMessageListener"))) .transform(DDAdvice.create().advice(isMethod().and(isPublic()).and(named("onMessage")), BatchMessageListenerAdvice.class.getName())) .type(named("org.apache.kafka.clients.consumer.ConsumerRecord")) .transform(DDAdvice.create().advice(isMethod().and(isPublic()).and(named("value")), RecoredValueAdvice.class.getName())) .asDecorator(); } public static class BatchMessageListenerAdvice { @Advice.OnMethodEnter(suppress = Throwable.class) public static Scope before() { FakeSpan span = new FakeSpan(); span.setKind(FakeSpan.Type_BatchMessageListener_Value); Scope scope = GlobalTracer.get().scopeManager().activate(span, false); return scope; } @Advice.OnMethodExit(suppress = Throwable.class) public static void after(@Advice.Enter Scope scope) { while (true) { Span span = GlobalTracer.get().activeSpan(); if (span != null && span instanceof FakeSpan) { FakeSpan fakeSpan = (FakeSpan) span; if (fakeSpan.getKind().equals(FakeSpan.Type_ConsumberRecord_Value)) { GlobalTracer.get().scopeManager().active().close(); } else { break; } } else { break; } } if (scope != null) { scope.close(); } } } public static class RecoredValueAdvice { @Advice.OnMethodEnter(suppress = Throwable.class) public static void before(@Advice.This ConsumerRecord record) { Span activeSpan = GlobalTracer.get().activeSpan(); if (activeSpan instanceof FakeSpan) { FakeSpan proxy = (FakeSpan) activeSpan; if (proxy.getKind().equals(FakeSpan.Type_ConsumberRecord_Value)) { GlobalTracer.get().scopeManager().active().close(); activeSpan = GlobalTracer.get().activeSpan(); if (activeSpan instanceof FakeSpan) { proxy = (FakeSpan) activeSpan; } } if (proxy.getKind().equals(FakeSpan.Type_BatchMessageListener_Value)) { final SpanContext spanContext = TracingKafkaUtils.extractSecond(record.headers(), GlobalTracer.get()); if (spanContext != null) { FakeSpan consumerProxy = new FakeSpan(); consumerProxy.setContext(spanContext); consumerProxy.setKind(FakeSpan.Type_ConsumberRecord_Value); GlobalTracer.get().scopeManager().activate(consumerProxy, false); } } } } } }
@AutoService(Instrumenter.class) public final class ExecutorInstrumentation extends Instrumenter.Configurable { @Override public AgentBuilder apply(final AgentBuilder agentBuilder) { return agentBuilder .type(not(isInterface()).and(hasSuperType(named(ExecutorService.class.getName())))) .transform(DDAdvice.create().advice(named("submit").and(takesArgument(0, Runnable.class)), SubmitTracedRunnableAdvice.class.getName())) .asDecorator(); } public static class SubmitTracedRunnableAdvice { @Advice.OnMethodEnter(suppress = Throwable.class) public static TracedRunnable wrapJob( @Advice.This Object dis, @Advice.Argument(value = 0, readOnly = false) Runnable task) { if (task != null && (!dis.getClass().getName().startsWith("slick.util.AsyncExecutor"))) { task = new TracedRunnable(task, GlobalTracer.get()); return (TracedRunnable) task; } return null; } } public static class TracedRunnable implements Runnable { private final Runnable delegate; private final Span span; private final Tracer tracer; public TracedRunnable(Runnable delegate, Tracer tracer) { this.delegate = delegate; this.tracer = tracer; if (tracer != null) { this.span = tracer.activeSpan(); } else { this.span = null; } } @Override public void run() { Scope scope = null; if (span != null && tracer != null) { scope = tracer.scopeManager().activate(span, false); } try { delegate.run(); } finally { if (scope != null) { scope.close(); } } } } }
public class ThreadLocalScopeManager implements ScopeManager { final ThreadLocal<ThreadLocalScope> tlsScope = new ThreadLocal<ThreadLocalScope>(); @Override public Scope activate(Span span, boolean finishOnClose) { return new ThreadLocalScope(this, span, finishOnClose); } @Override public Scope active() { return tlsScope.get(); } }
public class ThreadLocalScope implements Scope { private final ThreadLocalScopeManager scopeManager; private final Span wrapped; private final boolean finishOnClose; private final ThreadLocalScope toRestore; ThreadLocalScope(ThreadLocalScopeManager scopeManager, Span wrapped, boolean finishOnClose) { this.scopeManager = scopeManager; this.wrapped = wrapped; this.finishOnClose = finishOnClose; this.toRestore = scopeManager.tlsScope.get(); scopeManager.tlsScope.set(this); } @Override public void close() { if (scopeManager.tlsScope.get() != this) { // This shouldn't happen if users call methods in the expected order. Bail out. return; } if (finishOnClose) { wrapped.finish(); } scopeManager.tlsScope.set(toRestore); } @Override public Span span() { return wrapped; } }
RecoredValueAdvice没有销毁本身建立的对象,而是寄但愿于BatchMessageListenerAdvice去销毁。
但(SpringKafkaConsumerInstrumentation:L27)BatchAcknowledgingMessageListener.onMessage退出时,只会close主线程建立的ThreadLocalScope,不会close线程池中建立的ThreadLocalScope,致使子线程建立的ThreadLocalScope被循环引用,没法被正确GC,从而形成内存泄漏。