Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary). You may assume that the intervals were initially sorted according to their start times. Example 1: Given intervals [1,3],[6,9], insert and merge [2,5] in as [1,5],[6,9]. Example 2: Given [1,2],[3,5],[6,7],[8,10],[12,16], insert and merge [4,9] in as [1,2],[3,10],[12,16]. This is because the new interval [4,9] overlaps with [3,5],[6,7],[8,10].
给定一组顺序排列且相互之间没有重叠的区间,输入一个区间,将它插入到当前的区间数组中,而且将须要合并的区间合并,以后返回插入而且合并后的区间。数组
任何一个区间数组中的区间能够划分为三个类型,位于须要被合并的区间的前面的区间,须要被合并的区间,位于须要被合并的区间后面的区间。咱们将这三个类型的区间分别标注为类型1,类型2,类型3。
区间类型1: 当前区间的最大值小于插入区间的最大值
区间类型3: 当前区间的最小值大于插入区间的最大值
区间类型2: 判断比较复杂,能够经过非区间类型1和区间类型3来归类。在遇到区间类型二时,要更新插入区间的最大值和最小值app
代码实现以下:
方法一:code
public List<Interval> insert(List<Interval> intervals, Interval newInterval) { List<Interval> result = new ArrayList<Interval>(); int index = 0; while(index<intervals.size() && intervals.get(index).end < newInterval.start){ result.add(intervals.get(index++)); } while(index<intervals.size() && intervals.get(index).start < newInterval.end){ newInterval.start = Math.min(intervals.get(index).start, newInterval.start); newInterval.end = Math.max(intervals.get(index).end, newInterval.end); index++; } result.add(newInterval); while(index<intervals.size()){ result.add(intervals.get(index++)); } return result; }
方法二:get
public List<Interval> insert2(List<Interval> intervals, Interval newInterval) { List<Interval> result = new ArrayList<Interval>(); for(Interval temp : intervals){ if(newInterval==null || temp.end < newInterval.start){ result.add(temp); }else if(temp.start > newInterval.end){ result.add(newInterval); result.add(temp); newInterval = null; }else{ newInterval.start = Math.min(newInterval.start, temp.start); newInterval.end = Math.max(newInterval.end, temp.end); } } return result; }