LINKc++
首先在加入几个点以后全部的点都只有三种状态spa
一个是在独立集中,一个是和独立集联通,还有一个是没有被访问过code
而后前两个状态是能够压缩起来的get
由于咱们只须要记录下当前独立集大小和是否被访问过,而后每次加点咱们直接枚举加入独立集中的点而后周围联通的点均可以一块儿访问,只要保证当前枚举的点没有被访问过就能够了input
由于这样选出来的当前的点必定是否是独立集中的且不和独立集联通的it
而后每次由于加入了不少个点,咱们设\(w_i\)表示和i联通(包括i)的全部点的集合io
而后就能够用排列数算了,只须要保证当前选出来的加入独立集的点在全部其余点以前算就能够了ast
因此是\(dp_{i+1,s|w_{j}}+=dp_{i,s}*P_{n-cnt[s]-1}^{cnt[w_j\oplus(w_j\&s)]-1}\)function
#include<bits/stdc++.h> using namespace std; const int Mod = 998244353; const int N = 21; int n, m, w[N]; int fac[N], inv[N], cnt[1 << N]; int dp[N][1 << N]; int main() { #ifdef dream_maker freopen("input.txt", "r", stdin); #endif function<int(int a, int b)> add = [&](int a, int b) { return (a += b) >= Mod ? a - Mod : a; }; function<int(int a, int b)> sub = [&](int a, int b) { return (a -= b) < 0 ? a + Mod : a; }; function<int(int a, int b)> mul = [&](int a, int b) { return (long long) a * b % Mod; }; function<int(int a, int b)> fast_pow = [&](int a, int b) { int res = 1; for (; b; b >>= 1, a = mul(a, a)) if (b & 1) res = mul(res, a); return res; }; function<int(int a, int b)> P = [&](int a, int b) { return (a < b) ? 0 : mul(fac[a], inv[a - b]); }; scanf("%d %d", &n, &m); int up = (1 << n) - 1; for (int i = 1; i <= n; i++) w[i] = 1 << (i - 1); for (int i = 1; i <= m; i++) { int u, v; scanf("%d %d", &u, &v); w[u] |= 1 << (v - 1); w[v] |= 1 << (u - 1); } inv[0] = fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = mul(fac[i - 1], i); inv[n] = fast_pow(fac[n], Mod - 2); for (int i = n - 1; i >= 1; i--) inv[i] = mul(inv[i + 1], i + 1); for (int i = 1; i <= up; i++) { for (int j = 1; j <= n; j++) { cnt[i] += (i >> (j - 1)) & 1; } } dp[0][0] = 1; for (int i = 1; i <= n; i++) { for (int s = 0; s <= up; s++) if (dp[i - 1][s]) { for (int j = 1; j <= n; j++) if (!((s >> (j - 1)) & 1)) { dp[i][s | w[j]] = add(dp[i][s | w[j]], mul(dp[i - 1][s], P(n - cnt[s] - 1, cnt[w[j] ^ (w[j] & s)] - 1))); } } } for (int i = n; i >= 1; i--) if (dp[i][up]) { printf("%d", mul(dp[i][up], inv[n])); break; } return 0; }