接触了一个在Inference领域比较有影响力的模型——ESIM。同时薅了Colab羊毛。html
Enhanced LSTM for Natural Language Inference这篇论文提出了一种计算两个句子类似度的模型。模型由3个部分组成:python
首先将输入的两个句子,premise和hypothesis的词向量和
通过一个BiLSTM的处理,获得新的词向量表示
和
。git
论文中说到,计算两个词的相关程度最好的方法是计算词向量的内积,也就是。这样,计算两个句子的全部词对之间的类似度(attention),就能够得到一个矩阵github
接着是一个颇有意思的思想:既然要判断两个句子类似度,那么就须要看看二者之间可否相互表示。也就是分别用premise和hypothesis中的词向量和
表示对方的词向量。json
论文中的公式为:缓存
翻译一下就是,由于模型不知道应该哪对和
才是相近或相对,因此作了一个枚举的操做,将全部的状况都表示出来。以前计算的类似度矩阵就是就用来作加权。每一个位置上的权重即当前权重矩阵行(对于计算
来讲,对于计算
就是列)的Softmax值。bash
论文为了强化推理(Enhancement of inference information),将以前获得的中间结果都堆叠起来。网络
推理组合使用的词向量就是上一个部分所得的和
,仍是用到了BiLSTM来获取两组词向量的上下文信息。app
将全部的信息组合起来以后,一并送给全链接层,完成最后的糅合。ide
import os
import time
import logging
import pickle
from tqdm import tqdm_notebook as tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchtext
from torchtext import data, datasets
from torchtext.vocab import GloVe
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import nltk
from nltk import word_tokenize
import spacy
from keras_preprocessing.text import Tokenizer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
复制代码
cuda
复制代码
挂载Google Drive
from google.colab import drive
drive.mount('/content/drive')
复制代码
Go to this URL in a browser: https://accounts.google.com/o/oauth2/xxxxxxxx
Enter your authorization code:
··········
Mounted at /content/drive
复制代码
!nvidia-smi
复制代码
Fri Aug 9 04:45:35 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.67 Driver Version: 410.79 CUDA Version: 10.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K80 Off | 00000000:00:04.0 Off | 0 |
| N/A 60C P0 62W / 149W | 6368MiB / 11441MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
+-----------------------------------------------------------------------------+
复制代码
torchtext的使用方式参考了参考了:github.com/pytorch/exa…
torchtext中的GloVe能够直接使用,可是因为其没有提供相似torchvision的直接读取源文件的功能,而只能读取缓存,因此最好:
不过若是薅的是Colab羊毛,那就随便了(~ ̄▽ ̄)~
torchtext还能够直接加载SNLI数据集,不过数据集的加载目录结构以下:
TEXT = data.Field(batch_first=True, lower=True, tokenize="spacy")
LABEL = data.Field(sequential=False)
# 分离训练、验证、测试集
tic = time.time()
train, dev, test = datasets.SNLI.splits(TEXT, LABEL)
print(f"Cost: {(time.time() - tic) / 60:.2f} min")
# 加载GloVe预训练向量
tic = time.time()
glove_vectors = GloVe(name='6B', dim=100)
print(f"Creat GloVe done. Cost: {(time.time() - tic) / 60:.2f} min")
# 建立词汇表
tic = time.time()
TEXT.build_vocab(train, dev, test, vectors=glove_vectors)
LABEL.build_vocab(train)
print(f"Build vocab done. Cost: {(time.time() - tic) / 60:.2f} min")
print(f"TEXT.vocab.vectors.size(): {TEXT.vocab.vectors.size()}")
num_words = int(TEXT.vocab.vectors.size()[0])
# 保存分词和词向量的对应字典
if os.path.exists("/content/drive/My Drive/Colab Notebooks"):
glove_stoi_path = "/content/drive/My Drive/Colab Notebooks/vocab_label_stoi.pkl"
else:
glove_stoi_path = "./vocab_label_stoi.pkl"
pickle.dump([TEXT.vocab.stoi, LABEL.vocab.stoi], open(glove_stoi_path, "wb"))
batch_sz = 128
train_iter, dev_iter, test_iter = data.BucketIterator.splits(
datasets=(train, dev, test),
batch_sizes=(batch_sz, batch_sz, batch_sz),
shuffle=True,
device=device
)
复制代码
Cost: 7.94 min
Creat GloVe done. Cost: 0.00 min
Build vocab done. Cost: 0.12 min
TEXT.vocab.vectors.size(): torch.Size([34193, 100])
复制代码
炼丹的时候最好有一个全局配方,这样好调整。
class Config:
def __init__(self):
# For data
self.batch_first = True
try:
self.batch_size = batch_sz
except NameError:
self.batch_size = 512
# For Embedding
self.n_embed = len(TEXT.vocab)
self.d_embed = TEXT.vocab.vectors.size()[-1]
# For Linear
self.linear_size = self.d_embed
# For LSTM
self.hidden_size = 300
# For output
self.d_out = len(LABEL.vocab) # 表示输出为几维
self.dropout = 0.5
# For training
self.save_path = r"/content/drive/My Drive/Colab Notebooks" if os.path.exists(
r"/content/drive/My Drive/Colab Notebooks") else "./"
self.snapshot = os.path.join(self.save_path, "ESIM.pt")
self.device = device
self.epoch = 64
self.scheduler_step = 3
self.lr = 0.0004
self.early_stop_ratio = 0.985 # 能够提前结束训练过程
args = Config()
复制代码
代码参考了:github.com/pengshuang/…
对数据的正则化能够消除不一样维度数据分布不一样的问题,几何上的理解就是将n维空间的一个“椭球体”正则化为一个“球体”,这样能够简化模型的训练难度,提升训练速度。
可是若是将全部的输入数据所有正则化,会消耗大量的时间,Batch Normalization就是一种折衷的方法,它只对输入的batch_size个数据进行正则化。从几率上理解就是根据batch_size个样本的分布,估计全部样本的分布。
PyTorch的nn.BatchNorm1d听名字就知道是对一维数据的批正则化,因此这里有两个限制条件:
model.train()
)的时候,提供的批大小至少为2;测试、使用的(model.eval()
)时候没有batch大小的限制而我以前的数据处理所获得的每个批次的数据,通过词向量映射以后获得的形状为batch * seq_len * embed_dim
,因此这里有3个维度。而且通过torchtext的data.BucketIterator.splits
处理,每一个batch的seq_len
是动态的(和当前batch中最长句子的长度相同)。这样若是不加处理直接输入给BatchNorm1d
,通常会看到以下的报错:
RuntimeError: running_mean should contain xxx elements not yyy
参考代码实现很是漂亮,能够看出做者的代码功底。不过做者彷佛不是使用预处理的词向量做为Embedding向量,而我是用的是预训练的词向量GloVe,而且也不会去训练Glove,因此是否有必要增长nn.BatchNorm1d
?
由于盲目增长网络的层数并不会有好的影响,因此最好的方式就是先看看GloVe词向量是否是每一维都是“正则化的”。
glove = TEXT.vocab.vectors
means, stds = glove.mean(dim=0).numpy(), glove.std(dim=0).numpy()
dims = [i for i in range(glove.shape[1])]
plt.scatter(dims, means)
plt.scatter(dims, stds)
plt.legend(["mean", "std"])
plt.xlabel("Dims")
plt.ylabel("Features")
plt.show()
print(f"mean(means)={means.mean():.4f}, std(means)={means.std():.4f}")
print(f"mean(stds)={stds.mean():.4f}, std(stds)={stds.std():.4f}")
复制代码
mean(means)=0.0032, std(means)=0.0809
mean(stds)=0.4361, std(stds)=0.0541
复制代码
从图中能够看出每一维的分布仍是比较稳定的,因此不打算在Embedding层后使用nn.BatchNorm1d
。
nn.LSTM(
input_size, hidden_size, num_layers, bias=True, batch_first=False, dropout=0, bidirectional=False)
)
复制代码
nn.LSTM
的默认参数batch_first是False
,这会让习惯了CV的数据格式的我十分不适应,因此最好仍是设置一下True
。
如下是LSTM的输入/输出格式。Inputs能够不带上h_0
和c_0
,这个时候LSTM会自动生成全0的h_0
和c_0
。
class ESIM(nn.Module):
def __init__(self, args):
super(ESIM, self).__init__()
self.args = args
self.embedding = nn.Embedding(
args.n_embed, args.d_embed) # 参数的初始化能够放在以后
# self.bn_embed = nn.BatchNorm1d(args.d_embed)
self.lstm1 = nn.LSTM(args.d_embed, args.hidden_size,
num_layers=1, batch_first=True, bidirectional=True)
self.lstm2 = nn.LSTM(args.hidden_size * 8, args.hidden_size,
num_layers=1, batch_first=True, bidirectional=True)
self.fc = nn.Sequential(
nn.BatchNorm1d(args.hidden_size * 8),
nn.Linear(args.hidden_size * 8, args.linear_size),
nn.ELU(inplace=True),
nn.BatchNorm1d(args.linear_size),
nn.Dropout(args.dropout),
nn.Linear(args.linear_size, args.linear_size),
nn.ELU(inplace=True),
nn.BatchNorm1d(args.linear_size),
nn.Dropout(args.dropout),
nn.Linear(args.linear_size, args.d_out),
nn.Softmax(dim=-1)
)
def submul(self, x1, x2):
mul = x1 * x2
sub = x1 - x2
return torch.cat([sub, mul], -1)
def apply_multiple(self, x):
# input: batch_size * seq_len * (2 * hidden_size)
p1 = F.avg_pool1d(x.transpose(1, 2), x.size(1)).squeeze(-1)
p2 = F.max_pool1d(x.transpose(1, 2), x.size(1)).squeeze(-1)
# output: batch_size * (4 * hidden_size)
return torch.cat([p1, p2], 1)
def soft_attention_align(self, x1, x2, mask1, mask2):
''' x1: batch_size * seq_len * dim x2: batch_size * seq_len * dim '''
# attention: batch_size * seq_len * seq_len
attention = torch.matmul(x1, x2.transpose(1, 2))
# mask的做用:防止计算Softmax的时候出现异常值
mask1 = mask1.float().masked_fill_(mask1, float('-inf'))
mask2 = mask2.float().masked_fill_(mask2, float('-inf'))
# weight: batch_size * seq_len * seq_len
weight1 = F.softmax(attention + mask2.unsqueeze(1), dim=-1)
x1_align = torch.matmul(weight1, x2)
weight2 = F.softmax(attention.transpose(
1, 2) + mask1.unsqueeze(1), dim=-1)
x2_align = torch.matmul(weight2, x1)
# x_align: batch_size * seq_len * hidden_size
return x1_align, x2_align
def forward(self, sent1, sent2):
""" sent1: batch * la sent2: batch * lb """
mask1, mask2 = sent1.eq(0), sent2.eq(0)
x1, x2 = self.embedding(sent1), self.embedding(sent2)
# x1, x2 = self.bn_embed(x1), self.bn_embed(x2)
# batch * [la | lb] * dim
o1, _ = self.lstm1(x1)
o2, _ = self.lstm1(x2)
# Local Inference
# batch * [la | lb] * hidden_size
q1_align, q2_align = self.soft_attention_align(o1, o2, mask1, mask2)
# Inference Composition
# batch_size * seq_len * (8 * hidden_size)
q1_combined = torch.cat([o1, q1_align, self.submul(o1, q1_align)], -1)
q2_combined = torch.cat([o2, q2_align, self.submul(o2, q2_align)], -1)
# batch_size * seq_len * (2 * hidden_size)
q1_compose, _ = self.lstm2(q1_combined)
q2_compose, _ = self.lstm2(q2_combined)
# Aggregate
q1_rep = self.apply_multiple(q1_compose)
q2_rep = self.apply_multiple(q2_compose)
# Classifier
similarity = self.fc(torch.cat([q1_rep, q2_rep], -1))
return similarity
def take_snapshot(model, path):
"""保存模型训练结果到Drive上,防止Colab重置后丢失"""
torch.save(model.state_dict(), path)
print(f"Snapshot has been saved to {path}")
def load_snapshot(model, path):
model.load_state_dict(torch.load(path))
print(f"Load snapshot from {path} done.")
model = ESIM(args)
# if os.path.exists(args.snapshot):
# load_snapshot(model, args.snapshot)
# Embedding向量不训练
model.embedding.weight.data.copy_(TEXT.vocab.vectors)
model.embedding.weight.requires_grad = False
model.to(args.device)
复制代码
ESIM(
(embedding): Embedding(34193, 100)
(lstm1): LSTM(100, 300, batch_first=True, bidirectional=True)
(lstm2): LSTM(2400, 300, batch_first=True, bidirectional=True)
(fc): Sequential(
(0): BatchNorm1d(2400, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(1): Linear(in_features=2400, out_features=100, bias=True)
(2): ELU(alpha=1.0, inplace)
(3): BatchNorm1d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): Dropout(p=0.5)
(5): Linear(in_features=100, out_features=100, bias=True)
(6): ELU(alpha=1.0, inplace)
(7): BatchNorm1d(100, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): Dropout(p=0.5)
(9): Linear(in_features=100, out_features=4, bias=True)
(10): Softmax()
)
)
复制代码
这里有几个细节:
batch.label
是形状为(batch)的一维向量;而Y_pred
是形状为的二维向量,使用
.topk(1).indices
提取最大值后仍然是二维向量。
因此若是不拓展batch.label
的维度,PyTorch会自动广播batch.label
,最终获得的结果再也不是,而是
,那么最后计算出来的准确率会大到离谱。这是下面代码的含义:
(Y_pred.topk(1).indices == batch.label.unsqueeze(1))
复制代码
在Python3.6中,除法符号/
的结果默认是浮点型的,可是PyTorch并非这样,这也是另外一个很容易忽视的细节。
(Y_pred.topk(1).indices == batch.label.unsqueeze(1))
复制代码
上面代码结果能够看做是bool类型(其实是torch.uint8
)。调用.sum()
求和以后的结果类型是torch.LongTensor
。可是PyTorch中整数除法是不会获得浮点数的。
# 就像下面的代码会获得0同样
In [2]: torch.LongTensor([1]) / torch.LongTensor([5])
Out[2]: tensor([0])
复制代码
变量acc累加了每个batch中计算正确的样本数量,因为自动类型转换,acc如今指向torch.LongTensor
类型,因此最后计算准确率的时候必定要用.item()
提取出整数值。若是忽视了这个细节,那么最后获得的准确率是0。
def training(model, data_iter, loss_fn, optimizer):
"""训练部分"""
model.train()
data_iter.init_epoch()
acc, cnt, avg_loss = 0, 0, 0.0
for batch in data_iter:
Y_pred = model(batch.premise, batch.hypothesis)
loss = loss_fn(Y_pred, batch.label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
avg_loss += loss.item() / len(data_iter)
# unsqueeze是由于label是一维向量,下同
acc += (Y_pred.topk(1).indices == batch.label.unsqueeze(1)).sum()
cnt += len(batch.premise)
return avg_loss, (acc.item() / cnt) # 若是不提取item,会致使accuracy为0
def validating(model, data_iter, loss_fn):
"""验证部分"""
model.eval()
data_iter.init_epoch()
acc, cnt, avg_loss = 0, 0, 0.0
with torch.set_grad_enabled(False):
for batch in data_iter:
Y_pred = model(batch.premise, batch.hypothesis)
avg_loss += loss_fn(Y_pred, batch.label).item() / len(data_iter)
acc += (Y_pred.topk(1).indices == batch.label.unsqueeze(1)).sum()
cnt += len(batch.premise)
return avg_loss, (acc.item() / cnt)
def train(model, train_data, val_data):
"""训练过程"""
optimizer = optim.Adam(model.parameters(), lr=args.lr)
loss_fn = nn.CrossEntropyLoss()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='min', factor=0.5, patience=args.scheduler_step, verbose=True)
train_losses, val_losses, train_accs, val_accs = [], [], [], []
# Before train
tic = time.time()
train_loss, train_acc = validating(model, train_data, loss_fn)
val_loss, val_acc = validating(model, val_data, loss_fn)
train_losses.append(train_loss)
val_losses.append(val_loss)
train_accs.append(train_acc)
val_accs.append(val_acc)
min_val_loss = val_loss
print(f"Epoch: 0/{args.epoch}\t"
f"Train loss: {train_loss:.4f}\tacc: {train_acc:.4f}\t"
f"Val loss: {val_loss:.4f}\tacc: {val_acc:.4f}\t"
f"Cost time: {(time.time()-tic):.2f}s")
try:
for epoch in range(args.epoch):
tic = time.time()
train_loss, train_acc = training(
model, train_data, loss_fn, optimizer)
val_loss, val_acc = validating(model, val_data, loss_fn)
train_losses.append(train_loss)
val_losses.append(val_loss)
train_accs.append(train_acc)
val_accs.append(val_acc)
scheduler.step(val_loss)
print(f"Epoch: {epoch + 1}/{args.epoch}\t"
f"Train loss: {train_loss:.4f}\tacc: {train_acc:.4f}\t"
f"Val loss: {val_loss:.4f}\tacc: {val_acc:.4f}\t"
f"Cost time: {(time.time()-tic):.2f}s")
if val_loss < min_val_loss: # 即时保存
min_val_loss = val_loss
take_snapshot(model, args.snapshot)
# Early-stop:
# if len(val_losses) >= 3 and (val_loss - min_val_loss) / min_val_loss > args.early_stop_ratio:
# print(f"Early stop with best loss: {min_val_loss:.5f}")
# break
# args.early_stop_ratio *= args.early_stop_ratio
except KeyboardInterrupt:
print("Interrupted by user")
return train_losses, val_losses, train_accs, val_accs
train_losses, val_losses, train_accs, val_accs = train(
model, train_iter, dev_iter)
复制代码
Epoch: 0/64 Train loss: 1.3871 acc: 0.3335 Val loss: 1.3871 acc: 0.3331 Cost time: 364.32s
Epoch: 1/64 Train loss: 1.0124 acc: 0.7275 Val loss: 0.9643 acc: 0.7760 Cost time: 998.41s
Snapshot has been saved to /content/drive/My Drive/Colab Notebooks/ESIM.pt
Epoch: 2/64 Train loss: 0.9476 acc: 0.7925 Val loss: 0.9785 acc: 0.7605 Cost time: 1003.32s
Epoch: 3/64 Train loss: 0.9305 acc: 0.8100 Val loss: 0.9204 acc: 0.8217 Cost time: 999.49s
Snapshot has been saved to /content/drive/My Drive/Colab Notebooks/ESIM.pt
Epoch: 4/64 Train loss: 0.9183 acc: 0.8227 Val loss: 0.9154 acc: 0.8260 Cost time: 1000.97s
Snapshot has been saved to /content/drive/My Drive/Colab Notebooks/ESIM.pt
Epoch: 5/64 Train loss: 0.9084 acc: 0.8329 Val loss: 0.9251 acc: 0.8156 Cost time: 996.99s
....
Epoch: 21/64 Train loss: 0.8236 acc: 0.9198 Val loss: 0.8912 acc: 0.8514 Cost time: 992.48s
Epoch: 22/64 Train loss: 0.8210 acc: 0.9224 Val loss: 0.8913 acc: 0.8514 Cost time: 996.35s
Epoch 22: reducing learning rate of group 0 to 5.0000e-05.
Epoch: 23/64 Train loss: 0.8195 acc: 0.9239 Val loss: 0.8940 acc: 0.8485 Cost time: 1000.48s
Epoch: 24/64 Train loss: 0.8169 acc: 0.9266 Val loss: 0.8937 acc: 0.8490 Cost time: 1006.78s
Interrupted by user
复制代码
iters = [i + 1 for i in range(len(train_losses))]
# 防止KeyboardInterrupt的打断致使两组loss不等长
min_len = min(len(train_losses), len(val_losses))
# 绘制双纵坐标图
fig, ax1 = plt.subplots()
ax1.plot(iters, train_losses[: min_len], '-', label='train loss')
ax1.plot(iters, val_losses[: min_len], '-.', label='val loss')
ax1.set_xlabel("Epoch")
ax1.set_ylabel("Loss")
# 建立子坐标轴
ax2 = ax1.twinx()
ax2.plot(iters, train_accs[: min_len], ':', label='train acc')
ax2.plot(iters, val_accs[: min_len], '--', label='val acc')
ax2.set_ylabel("Accuracy")
# 为双纵坐标图添加图例
handles1, labels1 = ax1.get_legend_handles_labels()
handles2, labels2 = ax2.get_legend_handles_labels()
plt.legend(handles1 + handles2, labels1 + labels2, loc='center right')
plt.show()
复制代码
模型除了训练出结果之外,还须要能在实际中运用。
nlp = spacy.load("en")
# 从新加载以前训练结果最棒的模型参数
load_snapshot(model, args.snapshot)
# 小规模数据仍是cpu跑得快
model.to(torch.device("cpu"))
with open(r"/content/drive/My Drive/Colab Notebooks/vocab_label_stoi.pkl", "rb") as f:
vocab_stoi, label_stoi = pickle.load(f)
复制代码
Load snapshot from /content/drive/My Drive/Colab Notebooks/ESIM.pt done.
复制代码
def sentence2tensor(stoi, sent1: str, sent2: str):
"""将两个句子转化为张量"""
sent1 = [str(token) for token in nlp(sent1.lower())]
sent2 = [str(token) for token in nlp(sent2.lower())]
tokens1, tokens2 = [], []
for token in sent1:
tokens1.append(stoi[token])
for token in sent2:
tokens2.append(stoi[token])
delt_len = len(tokens1) - len(tokens2)
if delt_len > 0:
tokens2.extend([1] * delt_len)
else:
tokens1.extend([1] * (-delt_len))
tensor1 = torch.LongTensor(tokens1).unsqueeze(0)
tensor2 = torch.LongTensor(tokens2).unsqueeze(0)
return tensor1, tensor2
def use(model, premise: str, hypothsis: str):
"""使用模型测试"""
label_itos = {0: '<unk>', 1: 'entailment',
2: 'contradiction', 3: 'neutral'}
model.eval()
with torch.set_grad_enabled(False):
tensor1, tensor2 = sentence2tensor(vocab_stoi, premise, hypothsis)
predict = model(tensor1, tensor2)
top1 = predict.topk(1).indices.item()
print(f"The answer is '{label_itos[top1]}'")
prob = predict.cpu().squeeze().numpy()
plt.bar(["<unk>", "entailment", "contradiction", "neutral"], prob)
plt.ylabel("probability")
plt.show()
复制代码
输入两个句子以后,打印最可能的推测结果,并用直方图显示每种推测的几率
# 蕴含
use(model,
"A statue at a museum that no seems to be looking at.",
"There is a statue that not many people seem to be interested in.")
# 对立
use(model,
"A land rover is being driven across a river.",
"A sedan is stuck in the middle of a river.")
# 中立
use(model,
"A woman with a green headscarf, blue shirt and a very big grin.",
"The woman is young.")
复制代码
The answer is 'entailment'
复制代码
The answer is 'contradiction'
复制代码
The answer is 'neutral'
复制代码