题目连接node
Descriptionios
You are given a bunch of wooden sticks. Each endpoint of each stick is colored with some color. Is it possible to align the sticks in a straight line such that the colors of the endpoints that touch are of the same color?c++
Input算法
Input is a sequence of lines, each line contains two words, separated by spaces, giving the colors of the endpoints of one stick. A word is a sequence of lowercase letters no longer than 10 characters. There is no more than 250000 sticks.数组
Output数据结构
If the sticks can be aligned in the desired way, output a single line saying Possible, otherwise output Impossible.数据结构和算法
Sample Input优化
blue red
red violet
cyan blue
blue magenta
magenta cyanspa
Sample Output指针
Possible
分析:
大体题意:
给定一些木棒,木棒两端都涂上颜色,求是否能将木棒首尾相接,连成一条直线,要求不一样木棒相接的一边必须是相同颜色的。
解题思路:
能够用图论中欧拉路的知识来解这道题,首先能够把木棒两端当作节点,把木棒当作边,这样相同的颜色就是同一个节点
问题便转化为:
给定一个图,是否存在“一笔画”通过涂中每一点,以及通过每一边一次。
这样就是求图中是否存在欧拉路Euler-Path。
回顾经典的“七桥问题”,相信不少同窗立刻就明白了什么是 欧拉路 了,这里很少做解释。
由图论知识能够知道,无向图存在欧拉路的充要条件为:
① 图是连通的;
② 全部节点的度为偶数,或者有且只有两个度为奇数的节点。
其中①图的连通性用程序判断比较麻烦,先放一下。
这里先说说②关于度数的判断方法:
blue red
red violet
cyan blue
blue magenta
magenta cyan
节点的度用颜色出现次数来统计,如样例中,蓝色blue出现三次(不论是出度仍是入度),那么blue结点的度就为3,一样地,咱们也能够经过输入获得其余所有结点的度,因而,咱们有:
Blue=3
Red=2
Violet=1
Cyan=2
Magenta=2
用一个一维数组就能记录了,而后分别 模2,就能判断颜色结点的奇偶性
只要奇度数的结点数的个数 = 1 或 >=3 ,即便①图连通,欧拉路也必不存在
可是若 奇度数的结点数的个数 为0或 ==2,那么咱们继续进行①图的连通性证实:
证实①图的连通性,使用并查集MergeSet是很是高效的方法。
基本方法:
初始化所输入的n个结点为n棵树,那么就有一个n棵树的森林,此时每棵树的有惟一的结点(根),该结点的祖先就是它自己。再经过不断地输入边,获得某两个结点(集合)之间的关系,进而合并这两个结点(集合),那么这两个集合就构成一个新的集合,集合内的全部结点都有一个共同的新祖先,就是这个集合(树)的根。
最后只要枚举任意一个结点,他们都具备相同的祖先,那么就能证实图时连通的了。
可是单纯使用并查集是会超时的,由于这样会致使每次寻找某个结点的祖先时,平均都会花费O(n/2)时间,最坏状况,当n==50W时,O(n/2)大概为25ms,那么要肯定50W个结点是否有共同祖先时,总费时为50W*25ms ,铁定超,不算了= =
所以必须使用并查集时必须压缩路径,前几回搜索某个结点k的祖先时,在不断经过父亲结点寻找祖先结点时,顺便把从k到最终祖先结点S中通过的全部结点的祖先都指向S,那么之后的搜索就能把时间下降到O(1)
因为并查集必须利用 数组的下标 与 存储的对象,使用int是比较方便的处理方法,可是题目的“颜色结点”是string,不方便用来使用并查集,即便用map也不行,虽然STL的map是基于hash的基础上,但并不高效,在本题中使用会超时。
为此可使用Trie字典树,获得每一个颜色单词对应的int编号id ,能够说利用Trie把string一一映射到int,是本题后续处理的关键所在。关于动态建立字典树的方法去百度,这里很少说,下面只用用一个图简单说明一下用Trie字典树标识第一个颜色单词blue:
这个题目涉及了多个基本数据结构和算法,综合性很强,很是有表明性,可以A到这题确实是受益良多。
知识考查点:
一、字典树;
二、欧拉路:其中又考察了判断是否为连通图;
三、并查集 及其优化方法(路径压缩)。
输出:
POSSIBLE: 奇度数结点个数==0 或 ==2 且 图连通
IMPOSSIBLE:奇度数结点个数==1 或 >=3 或 图不连通
PS:注意建立TrieTree链表时,C++不存在NULL,要用 0 替代 NULL
代码:
#include<iostream> #include<stdio.h> #include<algorithm> #include<string.h> using namespace std; const int large=500000; //25W条棒子,有50W个端点 class TrieTree_Node //字典树结点 { public: bool flag; //标记到字典树从根到当前结点所构成的字符串是否为一个(颜色)单词 int id; //当前颜色(结点)的编号 TrieTree_Node* next[27]; TrieTree_Node() //initial { flag=false; id=0; memset(next,0,sizeof(next)); //0 <-> NULL } } root; //字典树根节点 int color=0; //颜色编号指针,最终为颜色总个数 int degree[large+1]= {0}; //第id个结点的总度数 int ancestor[large+1]; //第id个结点祖先 //寻找x结点的最终祖先 int find(int x) { if(ancestor[x]!=x) ancestor[x]=find(ancestor[x]); //路径压缩 return ancestor[x]; } //合并a、b两个集合 void union_set(int a,int b) { int pa=find(a); int pb=find(b); if(pa!=pb) ancestor[pb]=pa; //使a的祖先 做为 b的祖先 } //利用字典树构造字符串s到编号int的映射 int hash(char *s) { TrieTree_Node * p=&root; //从TrieTree的根节点出发搜索单词(单词不存在则建立) int len=0; while(s[len]!='\0') { int index=s[len++]-'a'; //把小写字母a~z映射到数字的1~26,做为字典树的每一层的索引 if(!p->next[index]) //当索引不存在时,构建索引 p->next[index]=new TrieTree_Node; p=p->next[index]; } if(p->flag) //颜色单词已存在 return p->id; //返回其编号 else //不然建立单词 { p->flag=true; p->id=++color; return p->id; //返回分配给新颜色的编号 } } int main(void) { /*Initial the Merge-Set*/ for(int k=1; k<=large; k++) //初始化,每一个结点做为一个独立集合 ancestor[k]=k; //对于只有一个结点x的集合,x的祖先就是它自己 /*Input*/ char a[11],b[11]; while(cin>>a>>b) { /*Creat the TrieTree*/ int i=hash(a); int j=hash(b); //获得a、b颜色的编号 /*Get all nodes' degree*/ degree[i]++; degree[j]++; //记录a、b颜色出现的次数(总度数) /*Creat the Merge-Set*/ union_set(i,j); } /*Judge the Euler-Path*/ int s=find(1); //若图为连通图,则s为全部结点的祖先 //若图为非连通图,s为全部祖先中的其中一个祖先 int num=0; //度数为奇数的结点个数 for(int i=1; i<=color; i++) { if(degree[i]%2==1) num++; if(num>2) //度数为奇数的结点数大于3,欧拉路必不存在 { cout<<"Impossible"<<endl; return 0; } if(find(i)!=s) //存在多个祖先,图为森林,不连通 { cout<<"Impossible"<<endl; return 0; } } if(num==1) //度数为奇数的结点数等于1,欧拉回路必不存在 cout<<"Impossible"<<endl; else //度数为奇数的结点数刚好等于2或不存在,存在欧回路 cout<<"Possible"<<endl; return 0; }