Towards Adversarially Robust Object Detection 论文笔记

前言 许多工作证明分类器在面对对抗攻击(adversarial attack)时是非常脆弱的,比如有一种对抗样本,它只对原图进行很轻微地修改,但是在视觉上与原图相比是完全不同的。因此也有很多工作致力于提升分类器的鲁棒性。 最近的一些工作发现,目标检测器也会由于蓄意设计的输入而受到攻击,如下图所示,展示了标准检测器和鲁棒性更强的检测器分别检测clean和adversarial图像的效果,可以看到,标
相关文章
相关标签/搜索