利用模拟退火提高Kmeans的聚类精度

  Kmeans算法是一种非监督聚类算法,由于原理简单而在业界被广泛使用,一般在实践中遇到聚类问题往往会优先使用Kmeans尝试一把看看结果。本人在工作中对Kmeans有过多次实践,进行过用户行为聚类(MapReduce版本)、图像聚类(MPI版本)等。然而在实践中发现初始点选择与聚类结果密切相关,如果初始点选取不当,聚类结果将很差。为解决这一问题,本博文尝试将模拟退火这一启发式算法与Kmeans
相关文章
相关标签/搜索