TiKV 源码解析(五)fail-rs 介绍

做者:张博康git

本文为 TiKV 源码解析系列的第五篇,为你们介绍 TiKV 在测试中使用的周边库 fail-rsgithub

fail-rs 的设计启发于 FreeBSD 的 failpoints,由 Rust 实现。经过代码或者环境变量,其容许程序在特定的地方动态地注入错误或者其余行为。在 TiKV 中一般在测试中使用 fail point 来构建异常的状况,是一个很是方便的测试工具。shell

Fail point 需求

在咱们的集成测试中,都是简单的构建一个 KV 实例,而后发送请求,检查返回值和状态的改变。这样的测试能够较为完整地测试功能,可是对于一些须要精细化控制的测试就鞭长莫及了。咱们固然能够经过 mock 网络层提供网络的精细模拟控制,可是对于诸如磁盘 IO、系统调度等方面的控制就没办法作到了。数据库

同时,在分布式系统中时序的关系是很是关键的,可能两个操做的执行顺行相反,就致使了迥然不一样的结果。尤为对于数据库来讲,保证数据的一致性是相当重要的,所以须要去作一些相关的测试。网络

基于以上缘由,咱们就须要使用 fail point 来复现一些 corner case,好比模拟数据落盘特别慢、raftstore 繁忙、特殊的操做处理顺序、错误 panic 等等。闭包

基本用法

示例

在详细介绍以前,先举一个简单的例子给你们一个直观的认识。分布式

仍是那个老生常谈的 Hello World:函数

#[macro_use]
extern crate fail;

fn say_hello() {
    fail_point!(“before_print”);
    println!(“Hello World~”);
}

fn main() {
    say_hello();
    fail::cfg("before_print", "panic");
    say_hello();
}

运行结果以下:工具

Hello World~
thread 'main' panicked at 'failpoint before_print panic' ...

能够看到最终只打印出一个 Hello World~,而在打印第二个以前就 panic 了。这是由于咱们在第一次打印完后才指定了这个 fail point 行为是 panic,所以第一次在 fail point 不作任何事情以后正常输出,而第二次在执行到 fail point 时就会根据配置的行为 panic 掉!测试

Fail point 行为

固然 fail point 不只仅能注入 panic,还能够是其余的操做,而且能够按照必定的几率出现。描述行为的格式以下:

[<pct>%][<cnt>*]<type>[(args...)][-><more terms>]
  • pct:行为被执行时有百分之 pct 的机率触发
  • cnt:行为总共能被触发的次数
  • type:行为类型

    • off:不作任何事
    • return(arg):提早返回,须要 fail point 定义时指定 expr,arg 会做为字符串传给 expr 计算返回值
    • sleep(arg):使当前线程睡眠 arg 毫秒
    • panic(arg):使当前线程崩溃,崩溃消息为 arg
    • print(arg):打印出 arg
    • pause:暂停当前线程,直到该 fail point 设置为其余行为为止
    • yield:使当前线程放弃剩余时间片
    • delay(arg):和 sleep 相似,可是让 CPU 空转 arg 毫秒
  • args:行为的参数

好比咱们想在 before_print 处先 sleep 1s 而后有 1% 的机率 panic,那么就能够这么写:

"sleep(1000)->1%panic"

定义 fail point

只须要使用宏 fail_point! 就能够在相应代码中提早定义好 fail point,而具体的行为在以后动态注入。

fail_point!("failpoint_name");
fail_point!("failpoint_name", |_| { // 指定生成自定义返回值的闭包,只有当 fail point 的行为为 return 时,才会调用该闭包并返回结果
    return Error
});
fail_point!("failpoint_name", a == b, |_| { // 当知足条件时,fail point 才被触发
    return Error
})

动态注入

环境变量

经过设置环境变量指定相应 fail point 的行为:

FAILPOINTS="<failpoint_name1>=<action>;<failpoint_name2>=<action>;..."

注意,在实际运行的代码须要先使用 fail::setup() 以环境变量去设置相应 fail point,不然 FAILPOINTS 并不会起做用。

#[macro_use]
extern crate fail;

fn main() {
    fail::setup(); // 初始化 fail point 设置
    do_fallible_work();
    fail::teardown(); // 清除全部 fail point 设置,而且恢复全部被 fail point 暂停的线程
}

代码控制

不一样于环境变量方式,代码控制更加灵活,能够在程序中根据状况动态调整 fail point 的行为。这种方式主要应用于集成测试,以此能够很轻松地构建出各类异常状况。

fail::cfg("failpoint_name", "actions"); // 设置相应的 fail point 的行为
fail::remove("failpoint_name"); // 解除相应的 fail point 的行为

内部实现

如下咱们将以 fail-rs v0.2.1 版本代码为基础,从 API 出发来看看其背后的具体实现。

fail-rs 的实现很是简单,总的来讲,就是内部维护了一个全局 map,其保存着相应 fail point 所对应的行为。当程序执行到某个 fail point 时,获取并执行该全局 map 中所保存的相应的行为。

全局 map 其具体定义在 FailPointRegistry

struct FailPointRegistry {
    registry: RwLock<HashMap<String, Arc<FailPoint>>>,
}

其中 FailPoint 的定义以下:

struct FailPoint {
    pause: Mutex<bool>,
    pause_notifier: Condvar,
    actions: RwLock<Vec<Action>>,
    actions_str: RwLock<String>,
}

pausepause_notifier 是用于实现线程的暂停和恢复,感兴趣的同窗能够去看看代码,太过细节在此不展开了;actions_str 保存着描述行为的字符串,用于输出;而 actions 就是保存着 failpoint 的行为,包括几率、次数、以及具体行为。Action 实现了 FromStr 的 trait,能够将知足格式要求的字符串转换成 Action。这样各个 API 的操做也就显而易见了,实际上就是对于这个全局 map 的增删查改:

  • fail::setup() 读取环境变量 FAILPOINTS 的值,以 ; 分割,解析出多个 failpoint name 和相应的 actions 并保存在 registry 中。
  • fail::teardown() 设置 registry 中全部 fail point 对应的 actions 为空。
  • fail::cfg(name, actions)name 和对应解析出的 actions 保存在 registry 中。
  • fail::remove(name) 设置 registryname 对应的 actions 为空。

而代码到执行到 fail point 的时候到底发生了什么呢,咱们能够展开 fail_point! 宏定义看一下:

macro_rules! fail_point {
    ($name:expr) => {{
        $crate::eval($name, |_| {
            panic!("Return is not supported for the fail point \"{}\"", $name);
        });
    }};
    ($name:expr, $e:expr) => {{
        if let Some(res) = $crate::eval($name, $e) {
            return res;
        }
    }};
    ($name:expr, $cond:expr, $e:expr) => {{
        if $cond {
            fail_point!($name, $e);
        }
    }};
}

如今一切都变得豁然开朗了,实际上就是对于 eval 函数的调用,当函数返回值为 Some 时则提早返回。而 eval 就是从全局 map 中获取相应的行为,在 p.eval(name) 中执行相应的动做,好比输出、等待亦或者 panic。而对于 return 行为的状况会特殊一些,在 p.eval(name) 中并不作实际的动做,而是返回 Some(arg) 并经过 .map(f) 传参给闭包产生自定义的返回值。

pub fn eval<R, F: FnOnce(Option<String>) -> R>(name: &str, f: F) -> Option<R> {
    let p = {
        let registry = REGISTRY.registry.read().unwrap();
        match registry.get(name) {
            None => return None,
            Some(p) => p.clone(),
        }
    };
    p.eval(name).map(f)
}

小结

至此,关于 fail-rs 背后的秘密也就清清楚楚了。关于在 TiKV 中使用 fail point 的测试详见 github.com/tikv/tikv/tree/master/tests/failpoints,你们感兴趣能够看看在 TiKV 中是如何来构建异常状况的。

同时,fail-rs 计划支持 HTTP API,欢迎感兴趣的小伙伴提交 PR。

相关文章
相关标签/搜索