递归算法的时间复杂度

递归算法你们应该都不陌生吧,其实最开始碰见递归应该是在数学课上,相似于f(x)=f(x-1)+f(x+1)f(1)=1f(2)=4f(3)=3这种数学题你们应该见过很多,其实思想就是层层递归,最终将目标值用f(1)f(2)f(3)表示。
前端

以前作个一个需求,须要实现相似操做系统文件夹的功能,咱们用MySQL数据库记录数据,表字段有4列,分别是idindex_namepidis_directoryindex_name记录文件或文件的名字,pid记录它的父级idis_directory标记它是文件仍是文件夹。记录被存下之后,就涉及到取数据的问题了,咱们前端须要的目标数据结构是这样的linux

[{"id":1,"name":"./"},{"id":2,"name":"./1.txt"},web

{"id":3,"name":"./dir1/"},面试

{"id":4,"name":"./dir1/2.txt"},...]算法

有点相似linux系统的tree命令。
数据库

初版代码是这样的:微信

tree = []数据结构

def getTree(pid):app

              return编辑器

for index in childIndexes:

 if len(tree) == 0:

   if index.is_directory==1                            tree.append(

{'id':index.id,'name':'./'+index.index_name+'/'})                     

getTree(index.id)

                     else:                            

tree.append(

{'id':index.id,'name':'/'+index.index_name})

              else: 

                    for item in tree:  

if item['id'] == index.id

                                   if item.is_directory==1:                                          tree.append({'id':index.id,'name': 

item['name']+index.index_name+'/'})    

                               else:  

                                        tree.append

(

{'id':index.id,'name':item['name']+index.index_name

}

)


 大概看一下这个算法的时间复杂度,第一层的遍历时间复杂度是n,第二层遍历的时间复杂度是n,内层的时间复杂度是On^2),再加上递归,最后的时间复杂度是O2^n*n^2),这个算法可见很粗糙,假如递归深度到是100,最后执行效率简直会让人头皮发麻。接下来咱们考虑一下如何优化。

第二版代码:

tree = []

def getTree(pid,path='./'):

              return

       for index in childIndexes:

             if len(tree) == 0: 

                    if index.is_directory==1                            tree.append({'id':index.id,

'name':path+index.index_name+'/'}) 

                           getTree(index.id, 

path+index.index_name+'/')

                    else:

                           tree.append({'id':index.id,

'name':path+index.index_name}) 

             else: 

                    if item.is_directory==1:                            tree.append({'id':index.id,

'name':path+index.index_name+'/'})

                     else: 

                           tree.append({'id':index.id,

'name':path+index.index_name})

咱们用变量保存每一次的path,此次咱们看看时间复杂度是多少。第一层遍历时间复杂度是O(n),加上递归,最后的时间复杂度是O(2^n*n),不算太理想,最起码比第一次好点。

再看看一个面试的常见的题目,斐波拉契数列,n=1,1,3,5,8,13...,求第n位是多少?

一看首先就想到了递归的方式:

def fibSquence(n):

       if n in (1,2):

        return fibSquence(n-1)+ fibSquence(n-2)

这个算法的时间复杂度是O(2^n),关于时间复杂度具体看调用次数便能明白。

咱们考虑一下如何优化,好比求n=3是,须要先求n=2,n=1,可是最开始n=1,n=2已经求过,多了两步重复计算。

下面是优化的代码:

fibMap = {1:1,2:2}

def fibSquence(n):

       else:

        result = fibSquence(n-1)+ fibSquence(n-2)              fibMap.update({n:result})

              return result


咱们用map报存中间值,map是基于hash实现的,时间复杂度是O(1),这样这个算法的时间复杂度就是O(n)

可是事实上这个问题大可没必要用递归方式求解

fibMap = {1:1,2:2}

def fibSquence(n):

       else:

              for i in range(3,n+1): 

                    fibMap.update({i:fibMap[i-1]+fibMap[i-2]})

              return fibMap[n]


这样咱们只用一次遍历,即可以求出目标值。

递归算法的优化大概就是避免重复运算,将中金状态保存起来,以便下次使用,从结构上来看,是将时间复杂度转换为空间复杂度来解决。递归算法的效率实际上是很是低的,能不用递归就尽可能不用递归;固然了也要具体问题具体对待,好比说开始提到我作的项目遇到的问题,不用递归我还真想不出其余更好的方式解决。

-END-


◆ ◆ ◆  ◆ 

发现文章有错误、对内容有疑问,均可以经过关注宜信技术学院微信公众号(CE_TECH),在后台留言给咱们。咱们每周会挑选出一位热心小伙伴,送上一份精美的小礼品。快来扫码关注咱们吧!

本文分享自微信公众号 - 宜信技术学院(CE_TECH)。
若有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一块儿分享。

相关文章
相关标签/搜索