上篇文章,咱们简单的了解了WebFlux的一些基础与背景,并经过示例来写了一个demo。咱们知道WebFlux是响应式的web框架,其特色之一就是能够经过函数式编程方式配置route。另外究竟什么是响应式编程呢?这篇文章咱们就简单探讨一下html
百科中这样定义函数式编程:java
函数式编程是种编程方式,它将电脑运算视为函数的计算。函数编程语言最重要的基础是λ演算(lambda calculus),并且λ演算的函数能够接受函数看成输入(参数)和输出(返回值)。那么在Java8里怎么样来实现它呢?web
在这里我先本身写一个例子编程
定义接口:app
package com.bdqn.lyrk.basic.java; /** * 函数式接口 * * @author chen.nie * @date 2018/7/18 **/ @FunctionalInterface public interface OperateNumberFunctions { void operate(Integer number); default void print() { } }
在定义的接口上添加@FunctionalInterface代表其是函数式接口,这个注解用于检测函数式接口规范,定义函数式接口时该接口内必须有且只有一个抽象的方法。框架
定义类:less
package com.bdqn.lyrk.basic.java; import java.util.Optional; import java.util.function.Predicate; /** * 定义函数式编程类 */ public class NumberFunctions { private Integer number; private NumberFunctions() { } private static NumberFunctions numberFunctions = new NumberFunctions(); public static NumberFunctions of(Integer number) { numberFunctions.number = number; return numberFunctions; } public NumberFunctions add(Integer number) { numberFunctions.number += number; return numberFunctions; } public NumberFunctions subtraction(Integer number) { numberFunctions.number -= number; return numberFunctions; } public Optional<NumberFunctions> filter(Predicate<Integer> predicate) { if (predicate.test(this.number)) return Optional.of(numberFunctions); return Optional.ofNullable(new NumberFunctions()); } public void operate(OperateNumberFunctions functions) { functions.operate(this.number); } }
在这里定义类进行简单的运算与过滤条件。那么在Main方法里能够这么写:异步
package com.bdqn.lyrk.basic.java; public class Main { public static void main(String[] args) { NumberFunctions.of(10).add(30).subtraction(2).filter(number -> number>20).get().operate(System.out::println); } }
那么输出结果为38编程语言
在Java8里有一个类叫Stream。Stream是数据流的意思,这个类略微有点像Reactor中Flux,它提供了相似于操做符的功能,咱们来看一个例子:ide
Main方法
package com.bdqn.lyrk.basic.java; import java.util.stream.Stream; import static java.util.stream.Collectors.toList; public class Main { public static void main(String[] args) { /* 在这里先将Stream里的内容作乘2的操做 而后在进行倒序排序 紧接着过滤出是4的倍数的数字 而后转换成集合在打印 */ Stream.of(15, 26, 34, 455, 5, 6).map(number -> number * 2).sorted((num1, num2) -> num2 - num1).filter(integer -> integer % 4 == 0).collect(toList()).forEach(System.out::println); } }
运行获得的结果:
68 52 12
该操做符是lambda表达式的更特殊写法,使用此操做符能够简化函数式接口的实现,这个方法至少知足如下特定条件:
1)方法返回值与函数式接口相同
2)方法参数与函数式接口相同
举例说明
package java.util.function; /** * Represents a supplier of results. * * <p>There is no requirement that a new or distinct result be returned each * time the supplier is invoked. * * <p>This is a <a href="package-summary.html">functional interface</a> * whose functional method is {@link #get()}. * * @param <T> the type of results supplied by this supplier * * @since 1.8 */ @FunctionalInterface public interface Supplier<T> { /** * Gets a result. * * @return a result */ T get(); }
java中Runnable接口:
@FunctionalInterface public interface Runnable { /** * When an object implementing interface <code>Runnable</code> is used * to create a thread, starting the thread causes the object's * <code>run</code> method to be called in that separately executing * thread. * <p> * The general contract of the method <code>run</code> is that it may * take any action whatsoever. * * @see java.lang.Thread#run() */ public abstract void run(); }
java中的Predicate接口:
package java.util.function; import java.util.Objects; /** * Represents a predicate (boolean-valued function) of one argument. * * <p>This is a <a href="package-summary.html">functional interface</a> * whose functional method is {@link #test(Object)}. * * @param <T> the type of the input to the predicate * * @since 1.8 */ @FunctionalInterface public interface Predicate<T> { /** * Evaluates this predicate on the given argument. * * @param t the input argument * @return {@code true} if the input argument matches the predicate, * otherwise {@code false} */ boolean test(T t); /** * Returns a composed predicate that represents a short-circuiting logical * AND of this predicate and another. When evaluating the composed * predicate, if this predicate is {@code false}, then the {@code other} * predicate is not evaluated. * * <p>Any exceptions thrown during evaluation of either predicate are relayed * to the caller; if evaluation of this predicate throws an exception, the * {@code other} predicate will not be evaluated. * * @param other a predicate that will be logically-ANDed with this * predicate * @return a composed predicate that represents the short-circuiting logical * AND of this predicate and the {@code other} predicate * @throws NullPointerException if other is null */ default Predicate<T> and(Predicate<? super T> other) { Objects.requireNonNull(other); return (t) -> test(t) && other.test(t); } /** * Returns a predicate that represents the logical negation of this * predicate. * * @return a predicate that represents the logical negation of this * predicate */ default Predicate<T> negate() { return (t) -> !test(t); } /** * Returns a composed predicate that represents a short-circuiting logical * OR of this predicate and another. When evaluating the composed * predicate, if this predicate is {@code true}, then the {@code other} * predicate is not evaluated. * * <p>Any exceptions thrown during evaluation of either predicate are relayed * to the caller; if evaluation of this predicate throws an exception, the * {@code other} predicate will not be evaluated. * * @param other a predicate that will be logically-ORed with this * predicate * @return a composed predicate that represents the short-circuiting logical * OR of this predicate and the {@code other} predicate * @throws NullPointerException if other is null */ default Predicate<T> or(Predicate<? super T> other) { Objects.requireNonNull(other); return (t) -> test(t) || other.test(t); } /** * Returns a predicate that tests if two arguments are equal according * to {@link Objects#equals(Object, Object)}. * * @param <T> the type of arguments to the predicate * @param targetRef the object reference with which to compare for equality, * which may be {@code null} * @return a predicate that tests if two arguments are equal according * to {@link Objects#equals(Object, Object)} */ static <T> Predicate<T> isEqual(Object targetRef) { return (null == targetRef) ? Objects::isNull : object -> targetRef.equals(object); } }
那么上述的接口分别可使用以下写法,注意实现该接口的方法特色
package com.bdqn.lyrk.basic.java; import java.util.function.Predicate; import java.util.function.Supplier; public class Main { private static int i; public static void main(String[] args) { /* 建立对象的方式 */ Supplier<Object> supplier = Object::new; /* 调用方法的方式(无参数) */ Runnable runnable = Main::add; /* 调用方法的方式(有参数) */ Predicate<String> predicate = Main::filter; } public static void add() { i++; System.out.println("test" + i); } public static boolean filter(String test) { return test != null; } }
咱们能够看到使用函数式编程借助于lambda表达式,使得代码更简洁清爽
关于响应式编程,百度百科是这么定义的:
简称RP(Reactive Programming)
最典型的示例就是,JDK提供的观察者模式类Observer与Observalbe:
package com.hzgj.lyrk.demo; import java.util.Observable; public class ObserverDemo extends Observable { public static void main(String[] args) { ObserverDemo observable = new ObserverDemo(); observable.addObserver((o, arg) -> { System.out.println("发生变化"); }); observable.addObserver((o, arg) -> { System.out.println("收到被观察者通知,准备改变"); }); observable.setChanged(); observable.notifyObservers(); } }
在上述代码示例中观察者并无及时执行,而是在接受到被观察者发送信号的时候才有了“响应”。其中setChanged()与notifyObservers方法就对应响应式编程中定义的关键词--变化与传播。还有一个典型的示例就是Swing中的事件机制,有兴趣的朋友能够下去查阅相关资料,在这里就再也不进行阐述。
从java9开始,Observer与Observable已经被标记为过期的类了,取而代之的是Flow类。Flow才是真正意义上的响应式编程类,由于观察者Observer与Observable虽然可以响应,可是在数据流的体现并非特别突出。Flow这个类,咱们能够先看一下:
public final class Flow { private Flow() {} // uninstantiable /** * A producer of items (and related control messages) received by * Subscribers. Each current {@link Subscriber} receives the same * items (via method {@code onNext}) in the same order, unless * drops or errors are encountered. If a Publisher encounters an * error that does not allow items to be issued to a Subscriber, * that Subscriber receives {@code onError}, and then receives no * further messages. Otherwise, when it is known that no further * messages will be issued to it, a subscriber receives {@code * onComplete}. Publishers ensure that Subscriber method * invocations for each subscription are strictly ordered in <a * href="package-summary.html#MemoryVisibility"><i>happens-before</i></a> * order. * * <p>Publishers may vary in policy about whether drops (failures * to issue an item because of resource limitations) are treated * as unrecoverable errors. Publishers may also vary about * whether Subscribers receive items that were produced or * available before they subscribed. * * @param <T> the published item type */ @FunctionalInterface public static interface Publisher<T> { /** * Adds the given Subscriber if possible. If already * subscribed, or the attempt to subscribe fails due to policy * violations or errors, the Subscriber's {@code onError} * method is invoked with an {@link IllegalStateException}. * Otherwise, the Subscriber's {@code onSubscribe} method is * invoked with a new {@link Subscription}. Subscribers may * enable receiving items by invoking the {@code request} * method of this Subscription, and may unsubscribe by * invoking its {@code cancel} method. * * @param subscriber the subscriber * @throws NullPointerException if subscriber is null */ public void subscribe(Subscriber<? super T> subscriber); } /** * A receiver of messages. The methods in this interface are * invoked in strict sequential order for each {@link * Subscription}. * * @param <T> the subscribed item type */ public static interface Subscriber<T> { /** * Method invoked prior to invoking any other Subscriber * methods for the given Subscription. If this method throws * an exception, resulting behavior is not guaranteed, but may * cause the Subscription not to be established or to be cancelled. * * <p>Typically, implementations of this method invoke {@code * subscription.request} to enable receiving items. * * @param subscription a new subscription */ public void onSubscribe(Subscription subscription); /** * Method invoked with a Subscription's next item. If this * method throws an exception, resulting behavior is not * guaranteed, but may cause the Subscription to be cancelled. * * @param item the item */ public void onNext(T item); /** * Method invoked upon an unrecoverable error encountered by a * Publisher or Subscription, after which no other Subscriber * methods are invoked by the Subscription. If this method * itself throws an exception, resulting behavior is * undefined. * * @param throwable the exception */ public void onError(Throwable throwable); /** * Method invoked when it is known that no additional * Subscriber method invocations will occur for a Subscription * that is not already terminated by error, after which no * other Subscriber methods are invoked by the Subscription. * If this method throws an exception, resulting behavior is * undefined. */ public void onComplete(); } /** * Message control linking a {@link Publisher} and {@link * Subscriber}. Subscribers receive items only when requested, * and may cancel at any time. The methods in this interface are * intended to be invoked only by their Subscribers; usages in * other contexts have undefined effects. */ public static interface Subscription { /** * Adds the given number {@code n} of items to the current * unfulfilled demand for this subscription. If {@code n} is * less than or equal to zero, the Subscriber will receive an * {@code onError} signal with an {@link * IllegalArgumentException} argument. Otherwise, the * Subscriber will receive up to {@code n} additional {@code * onNext} invocations (or fewer if terminated). * * @param n the increment of demand; a value of {@code * Long.MAX_VALUE} may be considered as effectively unbounded */ public void request(long n); /** * Causes the Subscriber to (eventually) stop receiving * messages. Implementation is best-effort -- additional * messages may be received after invoking this method. * A cancelled subscription need not ever receive an * {@code onComplete} or {@code onError} signal. */ public void cancel(); } /** * A component that acts as both a Subscriber and Publisher. * * @param <T> the subscribed item type * @param <R> the published item type */ public static interface Processor<T,R> extends Subscriber<T>, Publisher<R> { } static final int DEFAULT_BUFFER_SIZE = 256; /** * Returns a default value for Publisher or Subscriber buffering, * that may be used in the absence of other constraints. * * @implNote * The current value returned is 256. * * @return the buffer size value */ public static int defaultBufferSize() { return DEFAULT_BUFFER_SIZE; } }
Flow这个类里定义最基本的Publisher与Subscribe,该模式就是发布订阅模式。咱们来看一下代码示例:
package com.hzgj.lyrk.demo; import java.util.concurrent.Flow; public class Main { public static void main(String[] args) { Flow.Publisher<String> publisher = subscriber -> { subscriber.onNext("1"); // 1 subscriber.onNext("2"); subscriber.onError(new RuntimeException("出错")); // 2 // subscriber.onComplete(); }; publisher.subscribe(new Flow.Subscriber<>() { @Override public void onSubscribe(Flow.Subscription subscription) { subscription.cancel(); } @Override public void onNext(String item) { System.out.println(item); } @Override public void onError(Throwable throwable) { System.out.println("出错了"); } @Override public void onComplete() { System.out.println("publish complete"); } }); } }
代码1 是一种数据流的体现,在Publisher中每次调用onNext的时候,在中都会在Subscribe的onNext方法进行消费
代码2 一样是发送错误信号,等待订阅者进行消费
运行结果:
1 2 出错了
在上述代码中咱们能够发现:Publisher在没有被订阅的时候,是不会触发任何行为的。每次调用Publisher的onNext方法的时候都像是在发信号,订阅者收到信号时执行相关内容,这就是典型的响应式编程的案例。不过java9提供的这个功能对异步的支持不太好,也不够强大。所以才会出现Reactor与RxJava等响应式框架