Streaming简介 html
Streaming框架容许任何程序语言实现的程序在Hadoop MapReduce中使用,方便已有程序向Hadoop平台移植。所以能够说对于hadoop的扩展性意义重大,今天简单说一下。java
Streaming的原理是用Java实现一个包装用户程序的MapReduce程序,该程序负责调用MapReduce Java接口获取key/value对输入,建立一个新的进程启动包装的用户程序,将数据经过管道传递给包装的用户程序处理,而后调用MapReduce Java接口将用户程序的输出切分红key/value对输出。 编程
Streaming优势c#
1 开发效率高,便于移植app
只要按照标准输入输出格式进行编程,就能够知足hadoop要求。所以单机程序稍加改动就能够在集群上进行使用。 一样便于测试框架
只要按照 cat input | mapper | sort | reducer > output 进行单机测试便可。oop
若是单机测试经过,大多数状况是能够在集群上成功运行的,只要控制好内存就行了。测试
2 提升程序效率debug
有些程序对内存要求较高,若是用java控制内存毕竟不如C/C++。调试
Streaming不足
1 Hadoop Streaming默认只能处理文本数据,没法直接对二进制数据进行处理
2 Streaming中的mapper和reducer默认只能向标准输出写数据,不能方便地处理多路输出
具体参数介绍
-input <path> |
输入数据路径 |
-output <path> |
输出数据路径 |
-mapper <cmd|JavaClassName> |
mapper可执行程序或Java类 |
-reducer <cmd|JavaClassName> |
reducer可执行程序或Java类 |
-file <file> Optional |
分发本地文件 |
-cacheFile <file> Optional |
分发HDFS文件 |
-cacheArchive <file> Optional |
分发HDFS压缩文件 |
-numReduceTasks <num> Optional |
reduce任务个数 |
-jobconf | -D NAME=VALUE Optional |
做业配置参数 |
-combiner <JavaClassName> Optional |
Combiner Java类 |
-partitioner <JavaClassName> Optional |
Partitioner Java类 |
-inputformat <JavaClassName> Optional |
InputFormat Java类 |
-outputformat <JavaClassName>Optional |
OutputFormat Java类 |
-inputreader <spec> Optional |
InputReader配置 |
-cmdenv <n>=<v> Optional |
传给mapper和reducer的环境变量 |
-mapdebug <path> Optional |
mapper失败时运行的debug程序 |
-reducedebug <path> Optional |
reducer失败时运行的debug程序 |
-verbose Optional |
详细输出模式 |
下面是对各个参数的详细说明:
l -input <path>:指定做业输入,path能够是文件或者目录,可使用*通配符,-input选项可使用屡次指定多个文件或目录做为输入。
l -output <path>:指定做业输出目录,path必须不存在,并且执行做业的用户必须有建立该目录的权限,-output只能使用一次。
l -mapper:指定mapper可执行程序或Java类,必须指定且惟一。
l -reducer:指定reducer可执行程序或Java类,必须指定且惟一。
l -file, -cacheFile, -cacheArchive:分别用于向计算节点分发本地文件、HDFS文件和HDFS压缩文件。
l -numReduceTasks:指定reducer的个数,若是设置-numReduceTasks 0或者-reducer NONE则没有reducer程序,mapper的输出直接做为整个做业的输出。
-jobconf | -D NAME=VALUE:指定做业参数,NAME是参数名,VALUE是参数值,能够指定的参数参考hadoop-default.xml。特别建议用-jobconf mapred.job.name='My Job Name'设置做业名,使用-jobconf mapred.job.priority=VERY_HIGH | HIGH | NORMAL | LOW | VERY_LOW设置做业优先级,使用-jobconf mapred.job.map.capacity=M设置同时最多运行M个map任务,使用-jobconf mapred.job.reduce.capacity=N设置同时最多运行N个reduce任务。常见的做业配置参数以下表所示:
mapred.job.name |
做业名 |
mapred.job.priority |
做业优先级 |
mapred.job.map.capacity |
最多同时运行map任务数 |
mapred.job.reduce.capacity |
最多同时运行reduce任务数 |
hadoop.job.ugi |
做业执行权限 |
mapred.map.tasks |
map任务个数 |
mapred.reduce.tasks |
reduce任务个数 |
mapred.job.groups |
做业可运行的计算节点分组 |
mapred.task.timeout |
任务没有响应(输入输出)的最大时间 |
mapred.compress.map.output |
map的输出是否压缩 |
mapred.map.output.compression.codec |
map的输出压缩方式 |
mapred.output.compress |
reduce的输出是否压缩 |
mapred.output.compression.codec |
reduce的输出压缩方式 |
stream.map.output.field.separator |
map输出分隔符 |
l -combiner:指定combiner Java类,对应的Java类文件打包成jar文件后用-file分发。
l -partitioner:指定partitioner Java类,Streaming提供了一些实用的partitioner实现,参考KeyBasedFiledPartitoner和IntHashPartitioner。
l -inputformat, -outputformat:指定inputformat和outputformat Java类,用于读取输入数据和写入输出数据,分别要实现InputFormat和OutputFormat接口。若是不指定,默认使用TextInputFormat和TextOutputFormat。
l -cmdenv NAME=VALUE:给mapper和reducer程序传递额外的环境变量,NAME是变量名,VALUE是变量值。
l -mapdebug, -reducedebug:分别指定mapper和reducer程序失败时运行的debug程序。
l -verbose:指定输出详细信息,例如分发哪些文件,实际做业配置参数值等,能够用于调试。
from:http://www.cnblogs.com/luchen927/archive/2012/01/16/2323479.html