因为许多潜在的Pandas用户对SQL有必定的了解,所以本文章旨在提供一些如何使用Pandas执行各类SQL操做的示例。python
文件:tips.csv -sql
total_bill,tip,sex,smoker,day,time,size 0,16.99,1.01,Female,No,Sun,Dinner,2 1,10.34,1.66,Male,No,Sun,Dinner,3 2,21.01,3.50,Male,No,Sun,Dinner,3 3,23.68,3.31,Male,No,Sun,Dinner,2 4,24.59,3.61,Female,No,Sun,Dinner,4
import pandas as pd url = 'tips.csv' tips=pd.read_csv(url) print (tips.head())
输出结果:shell
total_bill tip sex smoker day time size 0 16.99 1.01 Female No Sun Dinner 2 1 10.34 1.66 Male No Sun Dinner 3 2 21.01 3.50 Male No Sun Dinner 3 3 23.68 3.31 Male No Sun Dinner 2 4 24.59 3.61 Female No Sun Dinner 4
在SQL中,选择是使用逗号分隔的列列表(或选择全部列)来完成的,例如 -数据库
SELECT total_bill, tip, smoker, time
FROM tips
LIMIT 5;
在Pandas中,列的选择是经过传递列名到DataFrame -url
tips[['total_bill', 'tip', 'smoker', 'time']].head(5)
完整的程序 -spa
import pandas as pd url = 'tips.csv' tips=pd.read_csv(url) rs = tips[['total_bill', 'tip', 'smoker', 'time']].head(5) print(rs)
输出结果:code
total_bill tip smoker time 0 16.99 1.01 No Dinner 1 10.34 1.66 No Dinner 2 21.01 3.50 No Dinner 3 23.68 3.31 No Dinner 4 24.59 3.61 No Dinner
调用没有列名称列表的DataFrame将显示全部列(相似于SQL的*
)。对象
SELECT * FROM tips WHERE time = 'Dinner' LIMIT 5;
数据帧能够经过多种方式进行过滤; 最直观的是使用布尔索引。blog
tips[tips['time'] == 'Dinner'].head(5)
完整的程序
import pandas as pd url = 'tips.csv' tips=pd.read_csv(url) rs = tips[tips['time'] == 'Dinner'].head(5) print(rs)
输出结果:索引
total_bill tip sex smoker day time size 0 16.99 1.01 Female No Sun Dinner 2 1 10.34 1.66 Male No Sun Dinner 3 2 21.01 3.50 Male No Sun Dinner 3 3 23.68 3.31 Male No Sun Dinner 2 4 24.59 3.61 Female No Sun Dinner 4
上述语句将一系列True/False
对象传递给DataFrame,并将全部行返回True
。
此操做将获取整个数据集中每一个组的记录数。 例如,一个查询提取性别的数量(即,按性别分组) -
SELECT sex, count(*)
FROM tips
GROUP BY sex;
在Pandas中的等值语句将是 -
tips.groupby('sex').size()
完整的程序
import pandas as pd url = 'tips.csv' tips=pd.read_csv(url) rs = tips.groupby('sex').size() print(rs)
输出结果:
sex Female 2 Male 3 dtype: int64
SQL(MySQL数据库)使用LIMIT
返回前n
行
SELECT * FROM tips
LIMIT 5 ;
在Pandas中的等值语句将是
tips.head(5)
下面来看看完整的程序
import pandas as pd url = 'tips.csv' tips=pd.read_csv(url) rs = tips[['smoker', 'day', 'time']].head(5) print(rs)
输出结果:
smoker day time 0 No Sun Dinner 1 No Sun Dinner 2 No Sun Dinner 3 No Sun Dinner 4 No Sun Dinner
这些是比较的几个基本操做,在前几章的Pandas库中学到的。