Pandas | 28 与SQL比较

因为许多潜在的Pandas用户对SQL有必定的了解,所以本文章旨在提供一些如何使用Pandas执行各类SQL操做的示例。python

 

文件:tips.csv -sql

total_bill,tip,sex,smoker,day,time,size
0,16.99,1.01,Female,No,Sun,Dinner,2
1,10.34,1.66,Male,No,Sun,Dinner,3
2,21.01,3.50,Male,No,Sun,Dinner,3
3,23.68,3.31,Male,No,Sun,Dinner,2
4,24.59,3.61,Female,No,Sun,Dinner,4

 

import pandas as pd

url = 'tips.csv'
tips=pd.read_csv(url)
print (tips.head())

输出结果:shell

total_bill tip sex smoker day time size 0 16.99 1.01 Female No Sun Dinner 2 1 10.34 1.66 Male No Sun Dinner 3 2 21.01 3.50 Male No Sun Dinner 3 3 23.68 3.31 Male No Sun Dinner 2 4 24.59 3.61 Female No Sun Dinner 4
 

选择(Select)

在SQL中,选择是使用逗号分隔的列列表(或选择全部列)来完成的,例如 -数据库

SELECT total_bill, tip, smoker, time
FROM tips
LIMIT 5;

Pandas中,列的选择是经过传递列名到DataFrame -url

tips[['total_bill', 'tip', 'smoker', 'time']].head(5)

完整的程序 -spa

 
import pandas as pd

url = 'tips.csv'
tips=pd.read_csv(url)
rs = tips[['total_bill', 'tip', 'smoker', 'time']].head(5)
print(rs)

输出结果:code

total_bill tip smoker time 0 16.99 1.01 No Dinner 1 10.34 1.66 No Dinner 2 21.01 3.50 No Dinner 3 23.68 3.31 No Dinner 4 24.59 3.61 No Dinner
 

调用没有列名称列表的DataFrame将显示全部列(相似于SQL的*)。对象

WHERE条件

SELECT * FROM tips WHERE time = 'Dinner' LIMIT 5;
 

数据帧能够经过多种方式进行过滤; 最直观的是使用布尔索引。blog

tips[tips['time'] == 'Dinner'].head(5)
 

 

完整的程序
import pandas as pd

url = 'tips.csv'
tips=pd.read_csv(url)
rs = tips[tips['time'] == 'Dinner'].head(5)
print(rs)

输出结果:索引

total_bill tip sex smoker day time size 0 16.99 1.01 Female No Sun Dinner 2 1 10.34 1.66 Male No Sun Dinner 3 2 21.01 3.50 Male No Sun Dinner 3 3 23.68 3.31 Male No Sun Dinner 2 4 24.59 3.61 Female No Sun Dinner 4
 

上述语句将一系列True/False对象传递给DataFrame,并将全部行返回True

经过GroupBy分组

此操做将获取整个数据集中每一个组的记录数。 例如,一个查询提取性别的数量(即,按性别分组) -

SELECT sex, count(*)
FROM tips
GROUP BY sex;

Pandas中的等值语句将是 -

tips.groupby('sex').size()
 

完整的程序

import pandas as pd

url = 'tips.csv'

tips=pd.read_csv(url)
rs = tips.groupby('sex').size()
print(rs)

输出结果:

sex Female 2 Male 3 dtype: int64
 

前N行

SQL(MySQL数据库)使用LIMIT返回前n行 

SELECT * FROM tips
LIMIT 5 ;
 

 

Pandas中的等值语句将是 

tips.head(5)
 
 

下面来看看完整的程序 

import pandas as pd

url = 'tips.csv'
tips=pd.read_csv(url)
rs = tips[['smoker', 'day', 'time']].head(5)
print(rs)

输出结果:

smoker day time 0 No Sun Dinner 1 No Sun Dinner 2 No Sun Dinner 3 No Sun Dinner 4 No Sun Dinner
 

这些是比较的几个基本操做,在前几章的Pandas库中学到的。

相关文章
相关标签/搜索