JavaShuo
栏目
标签
论文阅读 Training Neural Machine Translation To Apply Terminology Constraints
时间 2021-01-02
标签
论文
繁體版
原文
原文链接
一. 该方法是在模型训练层面解决术语注入的问题。 二. 训练阶段主要是改变数据的处理方式: 1. 原始数据层面(增加注释,0无关,1源语术语,2目标语言术语) 2.bpe层面 将原始数据的注释推广到bpe切分后的token上,eg:如果Stellvertreter_2切分成了a、b,则a_2,b_2。 3.embedding层面 将注释向量和词向量进行拼接。 4. 术语覆盖度问题 为了保证没有包
>>阅读原文<<
相关文章
1.
论文阅读——Robust Unsupervised Neural Machine Translation with Adversarial Training
2.
论文阅读《NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE》
3.
论文阅读:《Neural Machine Translation by Jointly Learning to Align and Translate》
4.
【论文阅读】Neural Machine Translation By Jointly Learning To Align and Translate
5.
【论文阅读】Neural Machine Translation by Jointly Learning to Align and Translate
6.
Neural machine translation by jointly learning to align and translate论文阅读笔记
7.
论文阅读:Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation
8.
论文阅读:ByteNet, Neural Machine Translation in Linear Time
9.
[论文阅读笔记] Massive Exploration of Neural Machine Translation Architectures
10.
论文阅读——Unsupervised Neural Machine Translation with Indirect Supervision
更多相关文章...
•
RSS 阅读器
-
RSS 教程
•
Docker Machine
-
Docker教程
•
JDK13 GA发布:5大特性解读
•
Scala 中文乱码解决
相关标签/搜索
论文阅读
CV论文阅读
terminology
constraints
machine
translation
外文阅读
neural
training
论文解读
Thymeleaf 教程
PHP教程
Redis教程
文件系统
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
安装cuda+cuDNN
2.
GitHub的使用说明
3.
phpDocumentor使用教程【安装PHPDocumentor】
4.
yarn run build报错Component is not found in path “npm/taro-ui/dist/weapp/components/rate/index“
5.
精讲Haproxy搭建Web集群
6.
安全测试基础之MySQL
7.
C/C++编程笔记:C语言中的复杂声明分析,用实例带你完全读懂
8.
Python3教程(1)----搭建Python环境
9.
李宏毅机器学习课程笔记2:Classification、Logistic Regression、Brief Introduction of Deep Learning
10.
阿里云ECS配置速记
本站公众号
欢迎关注本站公众号,获取更多信息
相关文章
1.
论文阅读——Robust Unsupervised Neural Machine Translation with Adversarial Training
2.
论文阅读《NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE》
3.
论文阅读:《Neural Machine Translation by Jointly Learning to Align and Translate》
4.
【论文阅读】Neural Machine Translation By Jointly Learning To Align and Translate
5.
【论文阅读】Neural Machine Translation by Jointly Learning to Align and Translate
6.
Neural machine translation by jointly learning to align and translate论文阅读笔记
7.
论文阅读:Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation
8.
论文阅读:ByteNet, Neural Machine Translation in Linear Time
9.
[论文阅读笔记] Massive Exploration of Neural Machine Translation Architectures
10.
论文阅读——Unsupervised Neural Machine Translation with Indirect Supervision
>>更多相关文章<<