像Google一样构建机器学习系统 - 在阿里云上搭建Kubeflow Pipelines

介绍 机器学习的工程复杂度,除了来自于常见的软件开发问题外,还和机器学习数据驱动的特点相关,这就带来了其工作流程链路更长,数据版本失控,实验难以跟踪、结果难以重现,模型迭代成本巨大等一系列问题。为了解决这些机器学习特有的问题,很多企业构建了内部机器学习平台来管理机器学习生命周期,其中最有名的是Google的Tensorflow Extended,Facebook的FBLearner Flow,Ub
相关文章
相关标签/搜索