操做系统提供了许多安全机制来尝试下降或阻止缓冲区溢出攻击带来的安全风险,包括DEP、ASLR等。在编写漏洞利用代码的时候,须要特别注意目标进程是否开启了DEP(Linux下对应NX)、ASLR(Linux下对应PIE)等机制,例如存在DEP(NX)的话就不能直接执行栈上的数据,存在ASLR的话各个系统调用的地址就是随机化的。linux
1、checksec
checksec是一个脚本软件,也就是用脚本写的一个文件,不到2000行,可用来学习shell。git
源码参见github
http://www.trapkit.de/tools/checksec.htmlshell
https://github.com/slimm609/checksec.sh/编程
下载方法之一为数组
wget https://github.com/slimm609/checksec.sh/archive/1.6.tar.gz安全
checksec究竟是用来干什么的?cookie
它是用来检查可执行文件属性,例如PIE, RELRO, PaX, Canaries, ASLR, Fortify Source等等属性。dom
通常来讲,若是是学习二进制漏洞利用的朋友,建议你们使用gdb里peda插件里自带的checksec功能,以下:
下面咱们就图中各个保护机制进行一个大体的了解。
2、CANNARY(栈保护)
这个选项表示栈保护功能有没有开启。
栈溢出保护是一种缓冲区溢出攻击缓解手段,当函数存在缓冲区溢出攻击漏洞时,攻击者能够覆盖栈上的返回地址来让shellcode可以获得执行。当启用栈保护后,函数开始执行的时候会先往栈里插入cookie信息,当函数真正返回的时候会验证cookie信息是否合法,若是不合法就中止程序运行。攻击者在覆盖返回地址的时候每每也会将cookie信息给覆盖掉,致使栈保护检查失败而阻止shellcode的执行。在Linux中咱们将cookie信息称为canary。
gcc在4.2版本中添加了-fstack-protector和-fstack-protector-all编译参数以支持栈保护功能,4.9新增了-fstack-protector-strong编译参数让保护的范围更广。
所以在编译时能够控制是否开启栈保护以及程度,例如:
1
2
3
4
|
gcc -o
test test.c // 默认状况下,不开启Canary保护
gcc -fno-
stack-protector -o test test.c //禁用栈保护
gcc -fstack-protector -o
test test.c //启用堆栈保护,不过只为局部变量中含有 char 数组的函数插入保护代码
gcc -fstack-protector-all -o
test test.c //启用堆栈保护,为全部函数插入保护代码
|
3、FORTIFY
fority其实很是轻微的检查,用于检查是否存在缓冲区溢出的错误。适用情形是程序采用大量的字符串或者内存操做函数,如memcpy,memset,stpcpy,strcpy,strncpy,strcat,strncat,sprintf,snprintf,vsprintf,vsnprintf,gets以及宽字符的变体。
_FORTIFY_SOURCE设为1,而且将编译器设置为优化1(gcc -O1),以及出现上述情形,那么程序编译时就会进行检查但又不会改变程序功能
_FORTIFY_SOURCE设为2,有些检查功能会加入,可是这可能致使程序崩溃。
gcc -D_FORTIFY_SOURCE=1
仅仅只会在编译时进行检查 (特别像某些头文件 #include <string.h>
)
gcc -D_FORTIFY_SOURCE=2
程序执行时也会有检查 (若是检查到缓冲区溢出,就终止程序)
举个例子可能简单明了一些: 一段简单的存在缓冲区溢出的C代码
1
2
3
4
5
6
|
void
fun(char *s) {
char buf[
0x100];
strcpy(buf, s);
/* Don't allow gcc to optimise away the buf */
asm
volatile("" :: "m" (buf));
}
|
用包含参数-U_FORTIFY_SOURCE编译
1
2
3
4
5
6
7
8
9
10
11
12
13
|
0804845
0 <fun>:
push %ebp ;
mov %esp,%ebp
sub $0x118,%esp ; 将0x118存储到栈上
mov
0x8(%ebp),%eax ; 将目标参数载入eax
mov %eax,
0x4(%esp) ; 保存目标参数
lea -
0x108(%ebp),%eax ; 数组buf
mov %eax,(%esp) ; 保存
call
8048320 <strcpy@plt>
leave ;
ret
|
用包含参数-D_FORTIFY_SOURCE=2编译
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
0804847
0 <fun>:
push %ebp ;
mov %esp,%ebp
sub $0x118,%esp ;
movl $0x10
0,0x8(%esp) ; 把0x100看成目标参数保存
mov
0x8(%ebp),%eax ;
mov %eax,
0x4(%esp) ;
lea -
0x108(%ebp),%eax ;
mov %eax,(%esp) ;
call
8048370 <__strcpy_chk@plt>
leave ;
ret
|
咱们能够看到gcc生成了一些附加代码,经过对数组大小的判断替换strcpy, memcpy, memset等函数名,达到防止缓冲区溢出的做用。
总结下就有:
1
2
3
|
gcc -o
test test.c // 默认状况下,不会开这个检查
gcc -D_FORTIFY_SOURCE=1 -o
test test.c // 较弱的检查
gcc -D_FORTIFY_SOURCE=2 -o
test test.c // 较强的检查
|
4、NX(DEP)
NX即No-eXecute(不可执行)的意思,NX(DEP)的基本原理是将数据所在内存页标识为不可执行,当程序溢出成功转入shellcode时,程序会尝试在数据页面上执行指令,此时CPU就会抛出异常,而不是去执行恶意指令。
工做原理如图: gcc编译器默认开启了NX选项,若是须要关闭NX选项,能够给gcc编译器添加-z execstack参数。 例如:
1
2
3
|
gcc -o
test test.c // 默认状况下,开启NX保护
gcc -z execstack -o
test test.c // 禁用NX保护
gcc -z noexecstack -o
test test.c // 开启NX保护
|
在Windows下,相似的概念为DEP(数据执行保护),在最新版的Visual Studio中默认开启了DEP编译选项。
5、PIE(ASLR)
通常状况下NX(Windows平台上称其为DEP)和地址空间分布随机化(ASLR)会同时工做。
内存地址随机化机制(address space layout randomization),有如下三种状况
1
2
3
|
0 - 表示关闭进程地址空间随机化。
1 - 表示将mmap的基址,stack和vdso页面随机化。
2 - 表示在1的基础上增长栈(heap)的随机化。
|
能够防范基于Ret2libc方式的针对DEP的攻击。ASLR和DEP配合使用,能有效阻止攻击者在堆栈上运行恶意代码。
Built as PIE:位置独立的可执行区域(position-independent executables)。这样使得在利用缓冲溢出和移动操做系统中存在的其余内存崩溃缺陷时采用面向返回的编程(return-oriented programming)方法变得可贵多。
liunx下关闭PIE的命令以下:
1
|
sudo -s echo
0 > /proc/sys/kernel/randomize_va_space
|
gcc编译命令
1
2
3
4
5
|
gcc -o
test test.c // 默认状况下,不开启PIE
gcc -fpie -pie -o
test test.c // 开启PIE,此时强度为1
gcc -fPIE -pie -o
test test.c // 开启PIE,此时为最高强度2
gcc -fpic -o
test test.c // 开启PIC,此时强度为1,不会开启PIE
gcc -fPIC -o
test test.c // 开启PIC,此时为最高强度2,不会开启PIE
|
说明:
PIE最先由RedHat的人实现,他在链接起上增长了-pie选项,这样使用-fPIE编译的对象就能经过链接器获得位置无关可执行程序。fPIE和fPIC有些不一样。能够参考Gcc和Open64中的-fPIC选项.
gcc中的-fpic选项,使用于在目标机支持时,编译共享库时使用。编译出的代码将经过全局偏移表(Global Offset Table)中的常数地址访存,动态装载器将在程序开始执行时解析GOT表项(注意,动态装载器操做系统的一部分,链接器是GCC的一部分)。而gcc中的-fPIC选项则是针对某些特殊机型作了特殊处理,好比适合动态连接并能避免超出GOT大小限制之类的错误。而Open64仅仅支持不会致使GOT表溢出的PIC编译。
gcc中的-fpie和-fPIE选项和fpic及fPIC很类似,但不一样的是,除了生成为位置无关代码外,还能假定代码是属于本程序。一般这些选项会和GCC连接时的-pie选项一块儿使用。fPIE选项仅能在编译可执行码时用,不能用于编译库。因此,若是想要PIE的程序,须要你除了在gcc增长-fPIE选项外,还须要在ld时增长-pie选项才能产生这种代码。即gcc -fpie -pie来编译程序。单独使用哪个都没法达到效果。
6、RELRO
在Linux系统安全领域数据能够写的存储区就会是攻击的目标,尤为是存储函数指针的区域。 因此在安全防御的角度来讲尽可能减小可写的存储区域对安全会有极大的好处.
GCC, GNU linker以及Glibc-dynamic linker一块儿配合实现了一种叫作relro的技术: read only relocation。大概实现就是由linker指定binary的一块通过dynamic linker处理过 relocation以后的区域为只读.
设置符号重定向表格为只读或在程序启动时就解析并绑定全部动态符号,从而减小对GOT(Global Offset Table)攻击。RELRO为” Partial RELRO”,说明咱们对GOT表具备写权限。
gcc编译:
1
2
3
4
|
gcc -o
test test.c // 默认状况下,是Partial RELRO
gcc -z norelro -o
test test.c // 关闭,即No RELRO
gcc -z lazy -o
test test.c // 部分开启,即Partial RELRO
gcc -z now -o
test test.c // 所有开启,即
|
7、总结
各类安全选择的编译参数以下:
- NX:
-z execstack
/-z noexecstack
(关闭 / 开启) - Canary:
-fno-stack-protector
/-fstack-protector
/-fstack-protector-all
(关闭 / 开启 / 全开启) - PIE:
-no-pie
/-pie
(关闭 / 开启) - RELRO:
-z norelro
/-z lazy
/-z now
(关闭 / 部分开启 / 彻底开启)
参考连接:上善若水