SQL Server 分析函数和排名函数

分析函数基于分组,计算分组内数据的聚合值,常常会和窗口函数OVER()一块儿使用,使用分析函数能够很方便地计算同比和环比,得到中位数,得到分组的最大值和最小值。分析函数和聚合函数不一样,不须要GROUP BY子句,对SELECT子句的结果集,经过OVER()子句分组。算法

使用如下脚本插入示例数据:sql

;with cte_data as 
(
select 'Document Control' as Department,'Arifin' as LastName,17.78 as Rate 
union all 
select 'Document Control','Norred',16.82 
union all 
select 'Document Control','Kharatishvili',16.82
union all 
select 'Document Control','Chai',10.25 
union all 
select 'Document Control','Berge',10.25 
union all 
select 'Information Services','Trenary',50.48
union all 
select 'Information Services','Conroy',39.66 
union all 
select 'Information Services','Ajenstat',38.46
union all 
select 'Information Services','Wilson',38.46
union all 
select 'Information Services','Sharma',32.45
union all 
select 'Information Services','Connelly',32.45
union all 
select 'Information Services','Berg',27.40
union all 
select 'Information Services','Meyyappan',27.40
union all 
select 'Information Services','Bacon',27.40
union all 
select 'Information Services','Bueno ',27.40
)
select Department
    ,LastName
    ,Rate
into #data
from cte_data
go
View Code 

一,分析函数

分析函数一般和OVER()函数搭配使用,SQL Server中共有4类分析函数。express

注意:distinct子句的执行顺序是在分析函数以后。 app

1,CUME_DIST 和PERCENT_RANK

CUME_DIST 计算的逻辑是:小于等于当前值的行数/分组内总行数ide

PERCENT_RANK 计算的逻辑是:(分组内当前行的RANK值-1)/ (分组内总行数-1),排名值是RANK()函数排序的结果值。函数

如下代码,用于计算累积分布和排名百分比:spa

select Department
    ,LastName
    ,Rate
    ,cume_dist() over(partition by Department order by Rate) as CumeDist
    ,percent_rank() over(partition by Department order by Rate) as PtcRank
    ,rank() over(partition by Department order by Rate asc) as rank_number
    ,count(0) over(partition by Department) as count_in_group
from #data
order by DepartMent
    ,Rate desc

2,PERCENTILE_CONT和PERCENTILE_DISC

PERCENTILE_CONT和PERCENTILE_DISC都是为了计算百分位的数值,好比计算在某个百分位时某个栏位的数值是多少。scala

PERCENTILE_CONT ( numeric_literal )  WITHIN GROUP ( ORDER BY order_by_expression [ ASC | DESC ] ) OVER ( [ <partition_by_clause> ] )
PERCENTILE_DISC ( numeric_literal )  WITHIN GROUP ( ORDER BY order_by_expression [ ASC | DESC ] ) OVER ( [ <partition_by_clause> ] )

这两个函数的区别是前者是连续型,后者是离散型。CONT表明continuous,连续值,DISC表明discrete,离散值。PERCENTILE_CONT是连续型,意味它考虑的是区间,因此值是绝对的中间值;而PERCENTILE_DISC是离散型,因此它更多考虑向上或者向下取舍,而不会考虑区间。3d

如下脚本用于得到分位数:code

select Department
    ,LastName
    ,Rate
    ,PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY Rate) OVER (PARTITION BY Department) AS MedianCont
    ,PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY Rate) OVER (PARTITION BY Department) AS MedianDisc
    ,row_number() over(partition by Department order by Rate) as rn
from #data
order by DepartMent
    ,Rate asc

3,LAG和LEAD

在一次查询中,对于同一个字段进行排序,Lag 函数用于获取同一分组内的前N行,Lead函数用于获取同一分组内的后N行,

LAG (scalar_expression [,offset] [,default])
    OVER ( [ partition_by_clause ] order_by_clause )
LEAD ( scalar_expression [ ,offset ] , [ default ] ) 
    OVER ( [ partition_by_clause ] order_by_clause )

结果日期,这两个函数特别适合用于计算同比和环比。

select DepartMent
    ,LastName
    ,Rate
    ,lag(Rate,1,0) over(partition by Department order by LastName) as LastRate
    ,lead(Rate,1,0) over(partition by Department order by LastName) as NextRate
from #data
order by Department
    ,LastName

4,FIRST_VALUE和LAST_VALUE

 获取分组内的最大值和最小值,分组内的最大值和最小值是惟一的。

LAST_VALUE ( [scalar_expression ) OVER ( [ partition_by_clause ] order_by_clause rows_range_clause )
FIRST_VALUE ( [scalar_expression ] ) OVER ( [ partition_by_clause ] order_by_clause [ rows_range_clause ] )

二,排名函数

SQL Server的排名函数是对查询的结果进行排名和分组,TSQL共有4个排名函数,分别是:RANK、NTILE、DENSE_RANK和ROW_NUMBER,和OVER()函数搭配使用,按照特定的顺序排名。

1,ROW_NUMBER函数

ROW_NUMBER函数其实是一个序列,每一个分组内都会建立一个序列,序列从1开始,按照顺序依次 +1 递增。

ROW_NUMBER ( ) 
    OVER ( [ PARTITION_BY_clause ] order_by_clause )

分组内序列的最大值就是该分组内的行的数目。

2,RANK函数

RANK函数用于排名时,不会返回连续的整数。RANK函数的语法是:在分组内,按照特定的顺序排名,序号从1依次递增,排名函数以tie为单位,每一个tie中的全部行的排名是相同的,排名多是不连续的。

RANK ( ) OVER ( [ partition_by_clause ] order_by_clause )

排名的算法是:

  • step1:按照指定的分区字段分组,在每一个分组内按照指定的字段排序。
  • step2:在每一个分组内,若是相邻的两行或多行相同在排序字段上的值相同,那么这些行称做一个tie,每一个tie中的全部行都会得到相同的排名。
  • step3:后面的排名会计算每一个tie中的行数,RANK函数不老是返回连续的整数,例如,班级中,A,B分数都是100分,C的分数是90分,那么A和B的排名是1,C的排名是3

3,DENSE_RANK

DENSE_RANK函数用于排名时,会返回连续的整数。每一个tie占用一个排名,每一个tie中的全部行的排名是相同的。排名值是连续的

DENSE_RANK ( ) OVER ( [ <partition_by_clause> ] < order_by_clause > )

排名的算法是:

  • step1:按照指定的分区字段分组,在每一个分组内按照指定的字段排序。
  • step2:在每一个分组内,若是相邻的两行或多行相同在排序字段上的值相同,那么这些行称做一个tie,每一个tie中的全部行都会得到相同的排名。
  • step3:后面的排名会计算每一个tie中的行数,RANK函数老是返回连续的整数,例如,班级中,A,B分数都是100分,C的分数是90分,那么A和B的排名是1,C的排名是2

4,NTILE

在每一个分组中,NTILE按照指定的顺序,把数据行分为N个小组(tile),NTILE返回小组编号。在每一个分组内,具备相同的小组编号的数据行,位于同一个小组。注意:小组的编号是按照行数,而不是按照列值。在同一分组内,存在两行的列值相同,而小组编号不一样。

NTILE (integer_expression) OVER ( [ <partition_by_clause> ] < order_by_clause > )

若是分区中的行数不能被integer_expression整除,那么会致使小组相差一个成员:较大的小组按OVER子句指定的顺序位于较小的小组以前。 例如,若是把8行分为3个小组,前2个小组有3行,后一个小组有2行。

若是分区中的中行数能被integer_expression整除,那么每一个小组具备相同的行数。

特别地,NTILE(4) 把一个分组分红4份,叫作Quartile。例如,如下脚本显示各个排名函数的执行结果:

select Department
    ,LastName
    ,Rate
    ,row_number() over(order by Rate) as [row number]
    ,rank() over(order by rate) as rate_rank
    ,dense_rank() over(order by rate) as rate_dense_rank
    ,ntile(4) over(order by rate) as quartile_by_rate
from #data

 

 

参考文档:

Analytic Functions (Transact-SQL)

Ranking Functions (Transact-SQL)

相关文章
相关标签/搜索