设计一个topology,来实现对文档里面的单词出现的频率进行统计。整个topology分为三个部分:java
SentenceSpout:数据源,在已知的英文句子中,随机发送一条句子出去。apache
SplitBolt:负责将单行文本记录(句子)切分红单词ide
CountBolt:负责对单词的频率进行累加ui
1 package com.ntjr.bigdata; 2 3 import org.apache.storm.Config; 4 import org.apache.storm.LocalCluster; 5 import org.apache.storm.StormSubmitter; 6 import org.apache.storm.generated.AlreadyAliveException; 7 import org.apache.storm.generated.AuthorizationException; 8 import org.apache.storm.generated.InvalidTopologyException; 9 import org.apache.storm.topology.TopologyBuilder; 10 import org.apache.storm.tuple.Fields; 11 12 public class WrodCountTopolog { 13 public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException, AuthorizationException { 14 //使用TopologyBuilder 构建一个topology 15 TopologyBuilder topologyBuilder = new TopologyBuilder(); 16 //发送英文句子 17 topologyBuilder.setSpout("sentenceSpout", new SentenceSpout(), 2); 18 //将一行行的文本切分红单词 19 topologyBuilder.setBolt("splitBolt", new SplitBolt(), 2).shuffleGrouping("sentenceSpout"); 20 //将单词的频率进行累加 21 topologyBuilder.setBolt("countBolt", new CountBolt(), 2).fieldsGrouping("splitBolt", new Fields("word")); 22 //启动topology的配置信息 23 Config config = new Config(); 24 //定义集群分配多少个工做进程来执行这个topology 25 config.setNumWorkers(3); 26 27 //本地模式提交topology 28 LocalCluster localCluster = new LocalCluster(); 29 localCluster.submitTopology("mywordCount", config, topologyBuilder.createTopology()); 30 31 //集群模式提交topology 32 StormSubmitter.submitTopologyWithProgressBar("mywordCount", config, topologyBuilder.createTopology()); 33 34 } 35 36 }
1 package com.ntjr.bigdata; 2 3 import java.util.Map; 4 5 import org.apache.storm.spout.SpoutOutputCollector; 6 import org.apache.storm.task.TopologyContext; 7 import org.apache.storm.topology.OutputFieldsDeclarer; 8 import org.apache.storm.topology.base.BaseRichSpout; 9 import org.apache.storm.tuple.Fields; 10 import org.apache.storm.tuple.Values; 11 12 public class SentenceSpout extends BaseRichSpout { 13 14 private static final long serialVersionUID = 1L; 15 // 用来收集Spout输出的tuple 16 private SpoutOutputCollector collector; 17 18 @Override 19 public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) { 20 this.collector = collector; 21 22 } 23 24 // 该方法会循环调用 25 @Override 26 public void nextTuple() { 27 collector.emit(new Values("i am lilei love hanmeimei")); 28 } 29 30 // 消息源能够发送多条消息流,该方法定义输出的消息类型的字段 31 @Override 32 public void declareOutputFields(OutputFieldsDeclarer declarer) { 33 declarer.declare(new Fields("love")); 34 35 } 36 37 }
1 package com.ntjr.bigdata; 2 3 import java.util.Map; 4 5 import org.apache.storm.task.OutputCollector; 6 import org.apache.storm.task.TopologyContext; 7 import org.apache.storm.topology.OutputFieldsDeclarer; 8 import org.apache.storm.topology.base.BaseRichBolt; 9 import org.apache.storm.tuple.Fields; 10 import org.apache.storm.tuple.Tuple; 11 import org.apache.storm.tuple.Values; 12 13 public class SplitBolt extends BaseRichBolt { 14 15 private static final long serialVersionUID = 1L; 16 17 private OutputCollector collector; 18 19 // 该方法只会调用一次用来执行初始化 20 @Override 21 public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { 22 this.collector = collector; 23 24 } 25 26 // 接收的参数时spout发出来的句子,一个句子就是一个tuple 27 @Override 28 public void execute(Tuple input) { 29 String line = input.getString(0); 30 String[] words = line.split(" "); 31 for (String word : words) { 32 collector.emit(new Values(word, 1)); 33 } 34 35 } 36 37 // 定义输出类型,输出类型为单词和单词的数目和collector.emit(new Values(word, 1));对应 38 @Override 39 public void declareOutputFields(OutputFieldsDeclarer declarer) { 40 declarer.declare(new Fields("word", "num")); 41 42 } 43 44 }
1 package com.ntjr.bigdata; 2 3 import java.util.HashMap; 4 import java.util.Map; 5 6 import org.apache.storm.task.OutputCollector; 7 import org.apache.storm.task.TopologyContext; 8 import org.apache.storm.topology.OutputFieldsDeclarer; 9 import org.apache.storm.topology.base.BaseRichBolt; 10 import org.apache.storm.tuple.Tuple; 11 12 public class CountBolt extends BaseRichBolt { 13 14 private static final long serialVersionUID = 1L; 15 private OutputCollector collector; 16 // 用来保存最后的计算结果 key:单词,value:单词的个数 17 Map<String, Integer> map = new HashMap<String, Integer>(); 18 19 // 该方法调用一次用来执行初始化 20 @Override 21 public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { 22 this.collector = collector; 23 24 } 25 26 @Override 27 public void execute(Tuple input) { 28 String word = input.getString(0); 29 Integer num = input.getInteger(1); 30 31 if (map.containsKey(word)) { 32 Integer count = map.get(word); 33 map.put(word, count + num); 34 } else { 35 map.put(word, num); 36 } 37 System.out.println("count:" + map); 38 } 39 40 @Override 41 public void declareOutputFields(OutputFieldsDeclarer declarer) { 42 43 } 44 45 }
3.1 Shuffle Grouping: 随机分组, 随机派发stream里面的tuple,保证每一个bolt接收到的tuple数目大体相同。this
3.2 Fields Grouping:按字段分组,好比按userid来分组,具备一样userid的tuple会被分到相同的Bolts里的一个task,而不一样的userid则会被分配到不一样的bolts里的task。spa
3.3 All Grouping:广播发送,对于每个tuple,全部的bolts都会收到。线程
3.4 Global Grouping:全局分组, 这个tuple被分配到storm中的一个bolt的其中一个task。再具体一点就是分配给id值最低的那个task。设计
3.5 Non Grouping:不分组,这stream grouping个分组的意思是说stream不关心到底谁会收到它的tuple。目前这种分组和Shuffle grouping是同样的效果, 有一点不一样的是storm会把这个bolt放到这个bolt的订阅者同一个线程里面去执行。3d
3.6 Direct Grouping: 直接分组, 这是一种比较特别的分组方法,用这种分组意味着消息的发送者指定由消息接收者的哪一个task处理这个消息。只有被声明为Direct Stream的消息流能够声明这种分组方法。并且这种消息tuple必须使用emitDirect方法来发射。code
消息处理者能够经过TopologyContext来获取处理它的消息的task的id (OutputCollector.emit方法也会返回task的id)。
3.7 Local or shuffle grouping:若是目标bolt有一个或者多个task在同一个工做进程中,tuple将会被随机发生给这些tasks。不然,和普通的Shuffle Grouping行为一致。