咱们知道kafka是基于TCP链接的。其并无像不少中间件使用netty做为TCP服务器。而是本身基于Java NIO写了一套。关于kafka为何没有选用netty的缘由能够看这里。java
对Java NIO不太了解的同窗能够先看下这两篇文章,本文须要读者对NIO有必定的了解。node
segmentfault.com/a/119000001…git
www.jianshu.com/p/0d497fe54…github
更多文章见我的博客:github.com/farmerjohng…apache
先看下Kafka Client的网络层架构,图片来自于这篇文章。segmentfault
本文主要分析的是Network层。服务器
Network层有两个重要的类:Selector
和KafkaChannel
。网络
这两个类和Java NIO层的java.nio.channels.Selector
和Channel
有点相似。架构
Selector
几个关键字段以下app
// jdk nio中的Selector
java.nio.channels.Selector nioSelector;
// 记录当前Selector的全部链接信息
Map<String, KafkaChannel> channels;
// 已发送完成的请求
List<Send> completedSends;
// 已收到的请求
List<NetworkReceive> completedReceives;
// 尚未彻底收到的请求,对上层不可见
Map<KafkaChannel, Deque<NetworkReceive>> stagedReceives;
// 做为client端,调用connect链接远端时返回true的链接
Set<SelectionKey> immediatelyConnectedKeys;
// 已经完成的链接
List<String> connected;
// 一次读取的最大大小
int maxReceiveSize;
复制代码
从网络层来看kafka是分为client端(producer和consumer,broker做为从时也是client)和server端(broker)的。本文将分析client端是如何创建链接,以及收发数据的。server也是依靠Selector
和KafkaChannel
进行网络传输。在Network层两端的区别并不大。
kafka的client端启动时会调用Selector#connect
(下文中如无特殊注明,均指org.apache.kafka.common.network.Selector
)方法创建链接。
public void connect(String id, InetSocketAddress address, int sendBufferSize, int receiveBufferSize) throws IOException {
if (this.channels.containsKey(id))
throw new IllegalStateException("There is already a connection for id " + id);
// 建立一个SocketChannel
SocketChannel socketChannel = SocketChannel.open();
// 设置为非阻塞模式
socketChannel.configureBlocking(false);
// 建立socket并设置相关属性
Socket socket = socketChannel.socket();
socket.setKeepAlive(true);
if (sendBufferSize != Selectable.USE_DEFAULT_BUFFER_SIZE)
socket.setSendBufferSize(sendBufferSize);
if (receiveBufferSize != Selectable.USE_DEFAULT_BUFFER_SIZE)
socket.setReceiveBufferSize(receiveBufferSize);
socket.setTcpNoDelay(true);
boolean connected;
try {
// 调用SocketChannel的connect方法,该方法会向远端发起tcp建连请求
// 由于是非阻塞的,因此该方法返回时,链接不必定已经创建好(即完成3次握手)。链接若是已经创建好则返回true,不然返回false。通常来讲server和client在一台机器上,该方法可能返回true。
connected = socketChannel.connect(address);
} catch (UnresolvedAddressException e) {
socketChannel.close();
throw new IOException("Can't resolve address: " + address, e);
} catch (IOException e) {
socketChannel.close();
throw e;
}
// 对CONNECT事件进行注册
SelectionKey key = socketChannel.register(nioSelector, SelectionKey.OP_CONNECT);
KafkaChannel channel;
try {
// 构造一个KafkaChannel
channel = channelBuilder.buildChannel(id, key, maxReceiveSize);
} catch (Exception e) {
...
}
// 将kafkachannel绑定到SelectionKey上
key.attach(channel);
// 放入到map中,id是远端服务器的名称
this.channels.put(id, channel);
// connectct为true表明该链接不会再触发CONNECT事件,因此这里要单独处理
if (connected) {
// OP_CONNECT won't trigger for immediately connected channels
log.debug("Immediately connected to node {}", channel.id());
// 加入到一个单独的集合中
immediatelyConnectedKeys.add(key);
// 取消对该链接的CONNECT事件的监听
key.interestOps(0);
}
}
复制代码
这里的流程和标准的NIO流程差很少,须要单独说下的是socketChannel#connect
方法返回true的场景,该方法的注释中有提到
* <p> If this channel is in non-blocking mode then an invocation of this
* method initiates a non-blocking connection operation. If the connection
* is established immediately, as can happen with a local connection, then
* this method returns <tt>true</tt>. Otherwise this method returns
* <tt>false</tt> and the connection operation must later be completed by
* invoking the {@link #finishConnect finishConnect} method.
复制代码
也就是说在非阻塞模式下,对于local connection
,链接可能在立刻就创建好了,那该方法会返回true,对于这种状况,不会再触发以后的connect
事件。所以kafka用一个单独的集合immediatelyConnectedKeys
将这些特殊的链接记录下来。在接下来的步骤会进行特殊处理。
以后会调用poll方法对网络事件监听:
public void poll(long timeout) throws IOException {
...
// select方法是对java.nio.channels.Selector#select的一个简单封装
int readyKeys = select(timeout);
...
// 若是有就绪的事件或者immediatelyConnectedKeys非空
if (readyKeys > 0 || !immediatelyConnectedKeys.isEmpty()) {
// 对已就绪的事件进行处理,第2个参数为false
pollSelectionKeys(this.nioSelector.selectedKeys(), false, endSelect);
// 对immediatelyConnectedKeys进行处理。第2个参数为true
pollSelectionKeys(immediatelyConnectedKeys, true, endSelect);
}
addToCompletedReceives();
...
}
private void pollSelectionKeys(Iterable<SelectionKey> selectionKeys, boolean isImmediatelyConnected, long currentTimeNanos) {
Iterator<SelectionKey> iterator = selectionKeys.iterator();
// 遍历集合
while (iterator.hasNext()) {
SelectionKey key = iterator.next();
// 移除当前元素,要否则下次poll又会处理一遍
iterator.remove();
// 获得connect时建立的KafkaChannel
KafkaChannel channel = channel(key);
...
try {
// 若是当前处理的是immediatelyConnectedKeys集合的元素或处理的是CONNECT事件
if (isImmediatelyConnected || key.isConnectable()) {
// finishconnect中会增长READ事件的监听
if (channel.finishConnect()) {
this.connected.add(channel.id());
this.sensors.connectionCreated.record();
...
} else
continue;
}
// 对于ssl的链接还有些额外的步骤
if (channel.isConnected() && !channel.ready())
channel.prepare();
// 若是是READ事件
if (channel.ready() && key.isReadable() && !hasStagedReceive(channel)) {
NetworkReceive networkReceive;
while ((networkReceive = channel.read()) != null)
addToStagedReceives(channel, networkReceive);
}
// 若是是WRITE事件
if (channel.ready() && key.isWritable()) {
Send send = channel.write();
if (send != null) {
this.completedSends.add(send);
this.sensors.recordBytesSent(channel.id(), send.size());
}
}
// 若是链接失效
if (!key.isValid())
close(channel, true);
} catch (Exception e) {
String desc = channel.socketDescription();
if (e instanceof IOException)
log.debug("Connection with {} disconnected", desc, e);
else
log.warn("Unexpected error from {}; closing connection", desc, e);
close(channel, true);
} finally {
maybeRecordTimePerConnection(channel, channelStartTimeNanos);
}
}
}
复制代码
由于immediatelyConnectedKeys
中的链接不会触发CONNNECT事件,因此在poll时会单独对immediatelyConnectedKeys
的channel调用finishConnect
方法。在明文传输模式下该方法会调用到PlaintextTransportLayer#finishConnect
,其实现以下:
public boolean finishConnect() throws IOException {
// 返回true表明已经链接好了
boolean connected = socketChannel.finishConnect();
if (connected)
// 取消监听CONNECt事件,增长READ事件的监听
key.interestOps(key.interestOps() & ~SelectionKey.OP_CONNECT | SelectionKey.OP_READ);
return connected;
}
复制代码
关于immediatelyConnectedKeys
更详细的内容能够看看这里。
kafka发送数据分为两个步骤:
1.调用Selector#send
将要发送的数据保存在对应的KafkaChannel
中,该方法并无进行真正的网络IO。
// Selector#send
public void send(Send send) {
String connectionId = send.destination();
// 若是所在的链接正在关闭中,则加入到失败集合failedSends中
if (closingChannels.containsKey(connectionId))
this.failedSends.add(connectionId);
else {
KafkaChannel channel = channelOrFail(connectionId, false);
try {
channel.setSend(send);
} catch (CancelledKeyException e) {
this.failedSends.add(connectionId);
close(channel, false);
}
}
}
//KafkaChannel#setSend
public void setSend(Send send) {
// 若是还有数据没有发送出去则报错
if (this.send != null)
throw new IllegalStateException("Attempt to begin a send operation with prior send operation still in progress.");
// 保存下来
this.send = send;
// 添加对WRITE事件的监听
this.transportLayer.addInterestOps(SelectionKey.OP_WRITE);
}
复制代码
Selector#poll
,在第一步中已经对该channel注册了WRITE事件的监听,因此在当channel可写时,会调用到pollSelectionKeys
将数据真正的发送出去。private void pollSelectionKeys(Iterable<SelectionKey> selectionKeys, boolean isImmediatelyConnected, long currentTimeNanos) {
Iterator<SelectionKey> iterator = selectionKeys.iterator();
// 遍历集合
while (iterator.hasNext()) {
SelectionKey key = iterator.next();
// 移除当前元素,要否则下次poll又会处理一遍
iterator.remove();
// 获得connect时建立的KafkaChannel
KafkaChannel channel = channel(key);
...
try {
...
// 若是是WRITE事件
if (channel.ready() && key.isWritable()) {
// 真正的网络写
Send send = channel.write();
// 一个Send对象可能会被拆成几回发送,write非空表明一个send发送完成
if (send != null) {
// completedSends表明已发送完成的集合
this.completedSends.add(send);
this.sensors.recordBytesSent(channel.id(), send.size());
}
}
...
} catch (Exception e) {
...
} finally {
maybeRecordTimePerConnection(channel, channelStartTimeNanos);
}
}
}
复制代码
当可写时,会调用KafkaChannel#write
方法,该方法中会进行真正的网络IO:
public Send write() throws IOException {
Send result = null;
if (send != null && send(send)) {
result = send;
send = null;
}
return result;
}
private boolean send(Send send) throws IOException {
// 最终调用SocketChannel#write进行真正的写
send.writeTo(transportLayer);
if (send.completed())
// 若是写完了,则移除对WRITE事件的监听
transportLayer.removeInterestOps(SelectionKey.OP_WRITE);
return send.completed();
}
复制代码
若是远端有发送数据过来,那调用poll方法时,会对接收到的数据进行处理。
public void poll(long timeout) throws IOException {
...
// select方法是对java.nio.channels.Selector#select的一个简单封装
int readyKeys = select(timeout);
...
// 若是有就绪的事件或者immediatelyConnectedKeys非空
if (readyKeys > 0 || !immediatelyConnectedKeys.isEmpty()) {
// 对已就绪的事件进行处理,第2个参数为false
pollSelectionKeys(this.nioSelector.selectedKeys(), false, endSelect);
// 对immediatelyConnectedKeys进行处理。第2个参数为true
pollSelectionKeys(immediatelyConnectedKeys, true, endSelect);
}
addToCompletedReceives();
...
}
private void pollSelectionKeys(Iterable<SelectionKey> selectionKeys, boolean isImmediatelyConnected, long currentTimeNanos) {
Iterator<SelectionKey> iterator = selectionKeys.iterator();
// 遍历集合
while (iterator.hasNext()) {
SelectionKey key = iterator.next();
// 移除当前元素,要否则下次poll又会处理一遍
iterator.remove();
// 获得connect时建立的KafkaChannel
KafkaChannel channel = channel(key);
...
try {
...
// 若是是READ事件
if (channel.ready() && key.isReadable() && !hasStagedReceive(channel)) {
NetworkReceive networkReceive;
// read方法会从网络中读取数据,但可能一次只能读取一个req的部分数据。只有读到一个完整的req的状况下,该方法才返回非null
while ((networkReceive = channel.read()) != null)
// 将读到的请求存在stagedReceives中
addToStagedReceives(channel, networkReceive);
}
...
} catch (Exception e) {
...
} finally {
maybeRecordTimePerConnection(channel, channelStartTimeNanos);
}
}
}
private void addToStagedReceives(KafkaChannel channel, NetworkReceive receive) {
if (!stagedReceives.containsKey(channel))
stagedReceives.put(channel, new ArrayDeque<NetworkReceive>());
Deque<NetworkReceive> deque = stagedReceives.get(channel);
deque.add(receive);
}
复制代码
在以后的addToCompletedReceives
方法中会对该集合进行处理。
private void addToCompletedReceives() {
if (!this.stagedReceives.isEmpty()) {
Iterator<Map.Entry<KafkaChannel, Deque<NetworkReceive>>> iter = this.stagedReceives.entrySet().iterator();
while (iter.hasNext()) {
Map.Entry<KafkaChannel, Deque<NetworkReceive>> entry = iter.next();
KafkaChannel channel = entry.getKey();
// 对于client端来讲该isMute返回为false,server端则依靠该方法保证消息的顺序
if (!channel.isMute()) {
Deque<NetworkReceive> deque = entry.getValue();
addToCompletedReceives(channel, deque);
if (deque.isEmpty())
iter.remove();
}
}
}
}
private void addToCompletedReceives(KafkaChannel channel, Deque<NetworkReceive> stagedDeque) {
// 将每一个channel的第一个NetworkReceive加入到completedReceives
NetworkReceive networkReceive = stagedDeque.poll();
this.completedReceives.add(networkReceive);
this.sensors.recordBytesReceived(channel.id(), networkReceive.payload().limit());
}
复制代码
读出数据后,会先放到stagedReceives集合中,而后在addToCompletedReceives
方法中对于每一个channel都会从stagedReceives取出一个NetworkReceive(若是有的话),放入到completedReceives中。
这样作的缘由有两点:
mute
掉,即再也不从该channel上读取数据。当处理完成以后,才将该channelunmute
,即以后能够从该socket上读取数据。而client端则是经过InFlightRequests#canSendMore
控制。代码中关于这段逻辑的注释以下:
/* In the "Plaintext" setting, we are using socketChannel to read & write to the network. But for the "SSL" setting, * we encrypt the data before we use socketChannel to write data to the network, and decrypt before we return the responses. * This requires additional buffers to be maintained as we are reading from network, since the data on the wire is encrypted * we won't be able to read exact no.of bytes as kafka protocol requires. We read as many bytes as we can, up to SSLEngine's * application buffer size. This means we might be reading additional bytes than the requested size. * If there is no further data to read from socketChannel selector won't invoke that channel and we've have additional bytes * in the buffer. To overcome this issue we added "stagedReceives" map which contains per-channel deque. When we are * reading a channel we read as many responses as we can and store them into "stagedReceives" and pop one response during * the poll to add the completedReceives. If there are any active channels in the "stagedReceives" we set "timeout" to 0 * and pop response and add to the completedReceives. * Atmost one entry is added to "completedReceives" for a channel in each poll. This is necessary to guarantee that * requests from a channel are processed on the broker in the order they are sent. Since outstanding requests added * by SocketServer to the request queue may be processed by different request handler threads, requests on each * channel must be processed one-at-a-time to guarantee ordering. */
复制代码
本文分析了kafka network层的实现,在阅读kafka源码时,若是不把network层搞清楚会比较迷,好比req/resp的顺序保障机制、真正进行网络IO的不是send方法等等。