Scipy依赖于Numpy Scipy提供了真正的矩阵 Scipy包含的功能:最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理、图像处理、常微分方程求解器等 Scipy是高端科学计算工具包 Scipy由一些特定功能的子模块组成
#模块用来计算快速傅里叶变换 import scipy.fftpack as fftpack import matplotlib.pyplot as plt %matplotlib inline #读取图片 data = plt.imread('moonlanding.png') # data2 = fftpack.fft2(data) data3 = np.where(np.abs(data2)>8e2,0,data2) data4 = fftpack.ifft2(data3) data5 = np.real(data4) plt.figure(figsize=(12,9)) plt.imshow(data5,cmap = 'gray')
最大值法: R=G=B=max(R,G,B) 这种方法灰度亮度比较高python
data2 = data.mean(axis = 2)
平均值法: R=G=B=(R+G+B)/3 这种方法灰度图像比较柔和数组
加权平均值 : R=G=B=(w1R+w2G+w3*B) 根据不一样的权重获得不一样底色的图片dom
data3 = np.dot(data,[0.299,0.587,0.114])
单条曲线函数
x = np.arange(0.0,6.0,0.01) plt.plot(x, x**2) plt.show()
多条曲线工具
x = np.arange(1, 5,0.01) plt.plot(x, x**2) plt.plot(x, x**3.0) plt.plot(x, x*3.0) plt.show() x = np.arange(1, 5) plt.plot(x, x*1.5, x, x*3.0, x, x/3.0) plt.show()
标题与标签优化
plt.plot([1, 3, 2, 4]) plt.xlabel('This is the X axis') plt.ylabel('This is the Y axis') plt.show() plt.plot([1, 3, 2, 4]) plt.title('Simple plot') plt.show()
根据线型绘制图片spa
numpy.random.randn(d0, d1, …, dn)
是从标准正态分布中返回一个或多个样本值。code
numpy.random.rand(d0, d1, …, dn)
的随机样本位于[0, 1)中。orm
numpy.random.standard_normal(size=None)
:随机一个浮点数或N维浮点数组,标准正态分布随机样本three
cumsum
:计算轴向元素累加和,返回由中间结果组成的数组 , 重点就是返回值是“由中间结果组成的数组”
plt.plot(np.random.randn(1000).cumsum(), linestyle = ':',marker = '.', label='one') plt.plot(np.random.randn(1000).cumsum(), 'r--', label='two') plt.plot(np.random.randn(1000).cumsum(), 'b.', label='three') plt.legend(loc='best') # loc='best' plt.show()
绘制圆
f = lambda x : (1 - x**2)**0.5 import numpy as np import matplotlib.pyplot as plt x = np.linspace(-1,1,1000) plt.figure(figsize = (4,4)) plt.plot(x,f(x),'-',x,-f(x),'-',color = 'r')
使用Scipy.integrate.quad()来进行计算
#integrate.quad(函数,区间端点) ,返回值为面积与精度 from scipy import integrate def g(x): return (1- x**2)**0.5 area,err = integrate.quad(g,-1,1) print(area,err)
保存二进制文件
from scipy import io as spio import numpy as np a = np.ones((3,3)) #mat文件是标准的二进制文件 spio.savemat('./data/file.mat',mdict={'a':a})
读取图片
from scipy import misc data = misc.imread('./data/moon.png')
读取保存的文件
data = spio.loadmat('./data/file.mat') data['a']
保存图片
#模糊,轮廓,细节,edge_enhance,edge_enhance_more, 浮雕,find_edges,光滑,smooth_more,锐化 misc.imsave('./data/save.png',arr=data)
导包提取数据处理数据
misc.face(gray=True,cmap='gray')
读取图片并能够进行灰度预处理
ndimage.rotate(图片,角度)
旋转图片
ndimage.zoom(图片,比例)
缩放图片
face[0:400,450:900]
切割图片,一维从0-400,二维从450-900
from scipy import misc,ndimage #原始图片 face = misc.face(gray=True) #移动图片坐标 shifted_face = ndimage.shift(face, (50, 50)) #移动图片坐标,而且指定模式 shifted_face2 = ndimage.shift(face, (-200, 0), mode='wrap') #旋转图片 rotated_face = ndimage.rotate(face, -30) #切割图片 cropped_face = face[10:-10, 50:-50] #对图片进行缩放 zoomed_face = ndimage.zoom(face, 0.5) faces = [shifted_face,shifted_face2,rotated_face,cropped_face,zoomed_face]
绘制图片
plt.figure(figsize = (12,12)) for i,face in enumerate(faces): plt.subplot(1,5,i+1) plt.imshow(face,cmap = plt.cm.gray) plt.axis('off')
图片的过滤
#导包处理滤波 from scipy import misc,ndimage import numpy as np import matplotlib.pyplot as plt face = misc.face(gray=True) face = face[:512, -512:] # 作成正方形 #图片加噪 noisy_face = np.copy(face).astype(np.float) #噪声图片 noisy_face += face.std() * 0.5 * np.random.standard_normal(face.shape) #高斯过滤 blurred_face = ndimage.gaussian_filter(noisy_face, sigma=1) #中值滤波 median_face = ndimage.median_filter(noisy_face, size=5) #signal中维纳滤波 from scipy import signal wiener_face = signal.wiener(noisy_face, (5, 5)) titles = ['noisy','gaussian','median','wiener'] faces = [noisy_face,blurred_face,median_face,wiener_face]
绘制图片
plt.figure(figsize=(12,12)) plt.subplot(141) plt.imshow(noisy_face,cmap = 'gray') plt.title('noisy') plt.subplot(142) plt.imshow(blurred_face,cmap = 'gray') plt.title('gaussian') plt.subplot(143) plt.imshow(median_face,cmap = 'gray') plt.title('median') plt.subplot(144) plt.imshow(wiener_face,cmap = 'gray') plt.title('wiener') plt.show()
线型图
#采用Series作法 import numpy as np import pandas as pd from pandas import Series,DataFrame import matplotlib.pyplot as plt np.random.seed(0) s = Series(np.random.randn(10).cumsum(),index = np.arange(0,100,10)) s.plot() plt.show(s.plot())
#DataFrame图标实例 np.random.seed(0) df = DataFrame(np.random.randn(10,4).cumsum(0), columns= ['A','B','C','D'], index = np.arange(0,100,10)) plt.show(df.plot())
柱状图
#水平与垂直柱状图Series fig,axes = plt.subplots(2,1) data = Series(np.random.rand(16),index = list('abcdefghijklmnop')) data.plot(kind = 'bar',ax = axes[0],color = 'b',alpha = 0.9) data.plot(kind = 'barh',ax = axes[1],color = 'b',alpha = 0.9)
#DataFrame柱状图 df = DataFrame(np.random.rand(6,4), index = ['one','two','three','four','five','six'], columns = pd.Index(['A','B','C','D'],name = 'Genus')) plt.show(df.plot(kind = 'bar')) df = DataFrame(np.random.rand(6,4), index = ['one','two','three','four','five','six'], columns = pd.Index(['A','B','C','D'],name = 'Genus')) plt.show(df.plot(kind = 'bar',stacked = True))
直方图与密度图
a = np.random.random(10) b = a/a.sum() s = Series(b) plt.show(s.hist(bins = 100)) #bins直方图的柱数
#密度图 a = np.random.random(10) b = a/a.sum() s = Series(b) plt.show(s.plot(kind = 'kde'))
带有密度估计的规格化直方图
%matplotlib inline comp1 = np.random.normal(0,1,size = 200) comp2 = np.random.normal(10,2,size = 200) values = Series(np.concatenate([comp1,comp2])) p1 = values.hist(bins = 100,alpha = 0.3,color = 'k',density = True) p2 = values.plot(kind = 'kde',style = '--',color = 'r')
散布图
#简单的散布图 df = DataFrame(np.random.randint(0,100,size = 100).reshape(50,2),columns = ['A','B']) df.plot('A','B',kind = 'scatter',title = 'x Vs y')
散步矩阵图
import numpy as np import pandas as pd from pandas import Series,DataFrame %matplotlib inline df = DataFrame(np.random.randn(200).reshape(50,4),columns = ['A','B','C','D']) pd.plotting.scatter_matrix(df,diagonal = 'kde',color = 'k')