TensorFlow框架(6)之RNN循环神经网络详解

  1. RNN循环神经网络 1.1 结构   循环神经网络(recurrent neural network,RNN)源自于1982年由Saratha Sathasivam 提出的霍普菲尔德网络。RNN的主要用途是处理和预测序列数据。全连接的前馈神经网络和卷积神经网络模型中,网络结构都是从输入层到隐藏层再到输出层,层与层之间是全连接或部分连接的,但每层之间的节点是无连接的。 图 11 RNN-r
相关文章
相关标签/搜索