时间复杂度o(1), o(n), o(logn), o(nlogn)

一、时间复杂度o(1), o(n), o(logn), o(nlogn)。算法时间复杂度的时候有说o(1), o(n), o(logn), o(nlogn),这是算法的时空复杂度的表示。不单单用于表示时间复杂度,也用于表示空间复杂度。O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增加量之间的关系。其中的n表明输入数据的量。算法

 

二、时间复杂度为O(1)。
  是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,不管输入数据增大多少倍,耗时/耗空间都不变。
哈希算法就是典型的O(1)时间复杂度,不管数据规模多大,均可以在一次计算后找到目标(不考虑冲突的话)函数

 

三、时间复杂度为O(n)。
  就表明数据量增大几倍,耗时也增大几倍。
好比常见的遍历算法。再好比时间复杂度O(n^2),就表明数据量增大n倍时,耗时增大n的平方倍,这是比线性更高的时间复杂度。
好比冒泡排序,就是典型的O(n^2)的算法,对n个数排序,须要扫描n×n次。spa

 

四、时间复杂度为O(logn)。
  当数据增大n倍时,耗时增大logn倍(这里的log是以2为底的,好比,当数据增大256倍时,耗时只增大8倍,是比线性还要低的时间复杂度)。
二分查找就是O(logn)的算法,每找一次排除一半的可能,256个数据中查找只要找8次就能够找到目标。

指数函数:通常地,y=a^x函数(a为常数且以a>0,a≠1)叫作指数函数。y=a^x表示a的x次方。
对数函数:若是a^x =N(a>0,且a≠1),那么数x叫作以a为底N的对数,记做x=logaN,读做以a为底N的对数,其中a叫作对数的底数,N叫作真数。


五、时间复杂度为O(nlogn)。
  就是n乘以logn,当数据增大256倍时,耗时增大256*8=2048倍。这个复杂度高于线性低于平方。
归并排序就是O(nlogn)的时间复杂度。排序

相关文章
相关标签/搜索