Python开发【第八篇】:网络编程 Socket

Socket

socket一般也称做"套接字",用于描述IP地址和端口,是一个通讯链的句柄,应用程序一般经过"套接字"向网络发出请求或者应答网络请求。html

socket起源于Unix,而Unix/Linux基本哲学之一就是“一切皆文件”,对于文件用【打开】【读写】【关闭】模式来操做。socket就是该模式的一个实现,socket便是一种特殊的文件,一些socket函数就是对其进行的操做(读/写IO、打开、关闭)python

socket和file的区别:react

  • file模块是针对某个指定文件进行【打开】【读写】【关闭】
  • socket模块是针对 服务器端 和 客户端Socket 进行【打开】【读写】【关闭】

 

#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',9999) sk = socket.socket() sk.bind(ip_port) sk.listen(5) while True: print 'server waiting...' conn,addr = sk.accept() client_data = conn.recv(1024) print client_data conn.sendall('不要回答,不要回答,不要回答') conn.close()
socket server
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',9999) sk = socket.socket() sk.connect(ip_port) sk.sendall('请求占领地球') server_reply = sk.recv(1024) print server_reply sk.close()
socket client

WEB服务应用:程序员

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/usr/bin/env python
#coding:utf-8
import socket
 
def handle_request(client):
     buf = client.recv( 1024 )
     client.send( "HTTP/1.1 200 OK\r\n\r\n" )
     client.send( "Hello, World" )
 
def main():
     sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
     sock.bind(( 'localhost' , 8080 ))
     sock.listen( 5 )
 
     while True :
         connection, address = sock.accept()
         handle_request(connection)
         connection.close()
 
if __name__ = = '__main__' :
   main()

更多功能web

sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM,0)数据库

参数一:地址簇编程

  socket.AF_INET IPv4(默认)   socket.AF_INET6 IPv6windows

  socket.AF_UNIX 只可以用于单一的Unix系统进程间通讯api

参数二:类型数组

  socket.SOCK_STREAM  流式socket , for TCP (默认)   socket.SOCK_DGRAM   数据报式socket , for UDP

  socket.SOCK_RAW 原始套接字,普通的套接字没法处理ICMP、IGMP等网络报文,而SOCK_RAW能够;其次,SOCK_RAW也能够处理特殊的IPv4报文;此外,利用原始套接字,能够经过IP_HDRINCL套接字选项由用户构造IP头。   socket.SOCK_RDM 是一种可靠的UDP形式,即保证交付数据报但不保证顺序。SOCK_RAM用来提供对原始协议的低级访问,在须要执行某些特殊操做时使用,如发送ICMP报文。SOCK_RAM一般仅限于高级用户或管理员运行的程序使用。   socket.SOCK_SEQPACKET 可靠的连续数据包服务

参数三:协议

  0  (默认)与特定的地址家族相关的协议,若是是 0 ,则系统就会根据地址格式和套接类别,自动选择一个合适的协议

import socket ip_port = ('127.0.0.1',9999) sk = socket.socket(socket.AF_INET,socket.SOCK_DGRAM,0) sk.bind(ip_port) while True: data = sk.recv(1024) print data import socket ip_port = ('127.0.0.1',9999) sk = socket.socket(socket.AF_INET,socket.SOCK_DGRAM,0) while True: inp = raw_input('数据:').strip() if inp == 'exit': break sk.sendto(inp,ip_port) sk.close()
UDP Demo

sk.bind(address)

  s.bind(address) 将套接字绑定到地址。address地址的格式取决于地址族。在AF_INET下,以元组(host,port)的形式表示地址。

sk.listen(backlog)

  开始监听传入链接。backlog指定在拒绝链接以前,能够挂起的最大链接数量。

      backlog等于5,表示内核已经接到了链接请求,但服务器尚未调用accept进行处理的链接个数最大为5       这个值不能无限大,由于要在内核中维护链接队列

sk.setblocking(bool)

  是否阻塞(默认True),若是设置False,那么accept和recv时一旦无数据,则报错。

sk.accept()

  接受链接并返回(conn,address),其中conn是新的套接字对象,能够用来接收和发送数据。address是链接客户端的地址。

  接收TCP 客户的链接(阻塞式)等待链接的到来

sk.connect(address)

  链接到address处的套接字。通常,address的格式为元组(hostname,port),若是链接出错,返回socket.error错误。

sk.connect_ex(address)

  同上,只不过会有返回值,链接成功时返回 0 ,链接失败时候返回编码,例如:10061

sk.close()

  关闭套接字

sk.recv(bufsize[,flag])

  接受套接字的数据。数据以字符串形式返回,bufsize指定最多能够接收的数量。flag提供有关消息的其余信息,一般能够忽略。

sk.recvfrom(bufsize[.flag])

  与recv()相似,但返回值是(data,address)。其中data是包含接收数据的字符串,address是发送数据的套接字地址。

sk.send(string[,flag])

  将string中的数据发送到链接的套接字。返回值是要发送的字节数量,该数量可能小于string的字节大小。即:可能未将指定内容所有发送。

sk.sendall(string[,flag])

  将string中的数据发送到链接的套接字,但在返回以前会尝试发送全部数据。成功返回None,失败则抛出异常。

      内部经过递归调用send,将全部内容发送出去。

sk.sendto(string[,flag],address)

  将数据发送到套接字,address是形式为(ipaddr,port)的元组,指定远程地址。返回值是发送的字节数。该函数主要用于UDP协议。

sk.settimeout(timeout)

  设置套接字操做的超时期,timeout是一个浮点数,单位是秒。值为None表示没有超时期。通常,超时期应该在刚建立套接字时设置,由于它们可能用于链接的操做(如 client 链接最多等待5s )

sk.getpeername()

  返回链接套接字的远程地址。返回值一般是元组(ipaddr,port)。

sk.getsockname()

  返回套接字本身的地址。一般是一个元组(ipaddr,port)

sk.fileno()

  套接字的文件描述符

# 服务端 import socket ip_port = ('127.0.0.1',9999) sk = socket.socket(socket.AF_INET,socket.SOCK_DGRAM,0) sk.bind(ip_port) while True: data,(host,port) = sk.recvfrom(1024) print(data,host,port) sk.sendto(bytes('ok', encoding='utf-8'), (host,port)) #客户端 import socket ip_port = ('127.0.0.1',9999) sk = socket.socket(socket.AF_INET,socket.SOCK_DGRAM,0) while True: inp = input('数据:').strip() if inp == 'exit': break sk.sendto(bytes(inp, encoding='utf-8'),ip_port) data = sk.recvfrom(1024) print(data) sk.close()
UDP

实例:智能机器人

#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8888) sk = socket.socket() sk.bind(ip_port) sk.listen(5) while True: conn,address = sk.accept() conn.sendall('欢迎致电 10086,请输入1xxx,0转人工服务.') Flag = True while Flag: data = conn.recv(1024) if data == 'exit': Flag = False elif data == '0': conn.sendall('经过可能会被录音.balabala一大推') else: conn.sendall('请从新输入.') conn.close()
服务端
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8005) sk = socket.socket() sk.connect(ip_port) sk.settimeout(5) while True: data = sk.recv(1024) print 'receive:',data inp = raw_input('please input:') sk.sendall(inp) if inp == 'exit': break sk.close()
客户端

IO多路复用

I/O多路复用指:经过一种机制,能够监视多个描述符,一旦某个描述符就绪(通常是读就绪或者写就绪),可以通知程序进行相应的读写操做。

Linux

Linux中的 select,poll,epoll 都是IO多路复用的机制。

Python

Python中有一个select模块,其中提供了:select、poll、epoll三个方法,分别调用系统的 select,poll,epoll 从而实现IO多路复用。

?
1
2
3
4
5
6
Windows Python:
     提供: select
Mac Python:
     提供: select
Linux Python:
     提供: select、poll、epoll

注意:网络操做、文件操做、终端操做等均属于IO操做,对于windows只支持Socket操做,其余系统支持其余IO操做,可是没法检测 普通文件操做 自动上次读取是否已经变化。

对于select方法:

?
1
2
3
4
5
6
7
8
9
10
11
句柄列表 11 , 句柄列表 22 , 句柄列表 33 = select.select(句柄序列 1 , 句柄序列 2 , 句柄序列 3 , 超时时间)
 
参数: 可接受四个参数(前三个必须)
返回值:三个列表
 
select方法用来监视文件句柄,若是句柄发生变化,则获取该句柄。
1 、当 参数 1 序列中的句柄发生可读时(accetp和read),则获取发生变化的句柄并添加到 返回值 1 序列中
2 、当 参数 2 序列中含有句柄时,则将该序列中全部的句柄添加到 返回值 2 序列中
3 、当 参数 3 序列中的句柄发生错误时,则将该发生错误的句柄添加到 返回值 3 序列中
4 、当 超时时间 未设置,则select会一直阻塞,直到监听的句柄发生变化
    当 超时时间 = 1 时,那么若是监听的句柄均无任何变化,则select会阻塞 1 秒,以后返回三个空列表,若是监听的句柄有变化,则直接执行。
#!/usr/bin/env python # -*- coding:utf-8 -*- import select import threading import sys while True: readable, writeable, error = select.select([sys.stdin,],[],[],1) if sys.stdin in readable: print 'select get stdin',sys.stdin.readline()
利用select监听终端操做实例
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket import select sk1 = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sk1.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sk1.bind(('127.0.0.1',8002)) sk1.listen(5) sk1.setblocking(0) inputs = [sk1,] while True: readable_list, writeable_list, error_list = select.select(inputs, [], inputs, 1) for r in readable_list: # 当客户端第一次链接服务端时 if sk1 == r: print 'accept' request, address = r.accept() request.setblocking(0) inputs.append(request) # 当客户端链接上服务端以后,再次发送数据时 else: received = r.recv(1024) # 当正常接收客户端发送的数据时 if received: print 'received data:', received # 当客户端关闭程序时 else: inputs.remove(r) sk1.close()
利用select实现伪同时处理多个Socket客户端请求:服务端
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8002) sk = socket.socket() sk.connect(ip_port) while True: inp = raw_input('please input:') sk.sendall(inp) sk.close()
利用select实现伪同时处理多个Socket客户端请求:客户端

此处的Socket服务端相比与原生的Socket,他支持当某一个请求再也不发送数据时,服务器端不会等待而是能够去处理其余请求的数据。可是,若是每一个请求的耗时比较长时,select版本的服务器端也没法完成同时操做。

#!/usr/bin/env python #coding:utf8 ''' 服务器的实现 采用select的方式 ''' import select import socket import sys import Queue #建立套接字并设置该套接字为非阻塞模式  server = socket.socket(socket.AF_INET,socket.SOCK_STREAM) server.setblocking(0) #绑定套接字 server_address = ('localhost',10000) print >>sys.stderr,'starting up on %s port %s'% server_address server.bind(server_address) #将该socket变成服务模式 #backlog等于5,表示内核已经接到了链接请求,但服务器尚未调用accept进行处理的链接个数最大为5 #这个值不能无限大,由于要在内核中维护链接队列  server.listen(5) #初始化读取数据的监听列表,最开始时但愿从server这个套接字上读取数据 inputs = [server] #初始化写入数据的监听列表,最开始并无客户端链接进来,因此列表为空  outputs = [] #要发往客户端的数据 message_queues = {} while inputs: print >>sys.stderr,'waiting for the next event' #调用select监听全部监听列表中的套接字,并将准备好的套接字加入到对应的列表中 readable,writable,exceptional = select.select(inputs,outputs,inputs)#列表中的socket 套接字 若是是文件呢? #监控文件句柄有某一处发生了变化 可写 可读 异常属于Linux中的网络编程 #属于同步I/O操做,属于I/O复用模型的一种 #rlist--等待到准备好读 #wlist--等待到准备好写 #xlist--等待到一种异常 #处理可读取的套接字 ''' 若是server这个套接字可读,则说明有新连接到来 此时在server套接字上调用accept,生成一个与客户端通信的套接字 并将与客户端通信的套接字加入inputs列表,下一次能够经过select检查链接是否可读 而后在发往客户端的缓冲中加入一项,键名为:与客户端通信的套接字,键值为空队列 select系统调用是用来让咱们的程序监视多个文件句柄(file descrīptor)的状态变化的。程序会停在select这里等待, 直到被监视的文件句柄有某一个或多个发生了状态改变 ''' ''' 若可读的套接字不是server套接字,有两种状况:一种是有数据到来,另外一种是连接断开 若是有数据到来,先接收数据,而后将收到的数据填入往客户端的缓存区中的对应位置,最后 将于客户端通信的套接字加入到写数据的监听列表: 若是套接字可读.但没有接收到数据,则说明客户端已经断开。这时须要关闭与客户端链接的套接字 进行资源清理 ''' for s in readable: if s is server: connection,client_address = s.accept() print >>sys.stderr,'connection from',client_address connection.setblocking(0)#设置非阻塞  inputs.append(connection) message_queues[connection] = Queue.Queue() else: data = s.recv(1024) if data: print >>sys.stderr,'received "%s" from %s'% \ (data,s.getpeername()) message_queues[s].put(data) if s not in outputs: outputs.append(s) else: print >>sys.stderr,'closing',client_address if s in outputs: outputs.remove(s) inputs.remove(s) s.close() del message_queues[s] #处理可写的套接字 ''' 在发送缓冲区中取出响应的数据,发往客户端。 若是没有数据须要写,则将套接字从发送队列中移除,select中再也不监视 ''' for s in writable: try: next_msg = message_queues[s].get_nowait() except Queue.Empty: print >>sys.stderr,' ',s,getpeername(),'queue empty' outputs.remove(s) else: print >>sys.stderr,'sending "%s" to %s'% \ (next_msg,s.getpeername()) s.send(next_msg) #处理异常状况 for s in exceptional: for s in exceptional: print >>sys.stderr,'exception condition on',s.getpeername() inputs.remove(s) if s in outputs: outputs.remove(s) s.close() del message_queues[s]
基于select实现socket服务端

SocketServer模块

SocketServer内部使用 IO多路复用 以及 “多线程” 和 “多进程” ,从而实现并发处理多个客户端请求的Socket服务端。即:每一个客户端请求链接到服务器时,Socket服务端都会在服务器是建立一个“线程”或者“进程” 专门负责处理当前客户端的全部请求。

ThreadingTCPServer

ThreadingTCPServer实现的Soket服务器内部会为每一个client建立一个 “线程”,该线程用来和客户端进行交互。

一、ThreadingTCPServer基础

使用ThreadingTCPServer:

  • 建立一个继承自 SocketServer.BaseRequestHandler 的类
  • 类中必须定义一个名称为 handle 的方法
  • 启动ThreadingTCPServer
#!/usr/bin/env python # -*- coding:utf-8 -*- import SocketServer class MyServer(SocketServer.BaseRequestHandler): def handle(self): # print self.request,self.client_address,self.server conn = self.request conn.sendall('欢迎致电 10086,请输入1xxx,0转人工服务.') Flag = True while Flag: data = conn.recv(1024) if data == 'exit': Flag = False elif data == '0': conn.sendall('经过可能会被录音.balabala一大推') else: conn.sendall('请从新输入.') if __name__ == '__main__': server = SocketServer.ThreadingTCPServer(('127.0.0.1',8009),MyServer) server.serve_forever()
SocketServer实现服务器
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8009) sk = socket.socket() sk.connect(ip_port) sk.settimeout(5) while True: data = sk.recv(1024) print 'receive:',data inp = raw_input('please input:') sk.sendall(inp) if inp == 'exit': break sk.close()
客户端

二、ThreadingTCPServer源码剖析

ThreadingTCPServer的类图关系以下:

 

内部调用流程为:

  • 启动服务端程序
  • 执行 TCPServer.__init__ 方法,建立服务端Socket对象并绑定 IP 和 端口
  • 执行 BaseServer.__init__ 方法,将自定义的继承自SocketServer.BaseRequestHandler 的类 MyRequestHandle赋值给 self.RequestHandlerClass
  • 执行 BaseServer.server_forever 方法,While 循环一直监听是否有客户端请求到达 ...
  • 当客户端链接到达服务器
  • 执行 ThreadingMixIn.process_request 方法,建立一个 “线程” 用来处理请求
  • 执行 ThreadingMixIn.process_request_thread 方法
  • 执行 BaseServer.finish_request 方法,执行 self.RequestHandlerClass()  即:执行 自定义 MyRequestHandler 的构造方法(自动调用基类BaseRequestHandler的构造方法,在该构造方法中又会调用 MyRequestHandler的handle方法)

ThreadingTCPServer相关源码:

class BaseServer: """Base class for server classes. Methods for the caller: - __init__(server_address, RequestHandlerClass) - serve_forever(poll_interval=0.5) - shutdown() - handle_request() # if you do not use serve_forever() - fileno() -> int # for select() Methods that may be overridden: - server_bind() - server_activate() - get_request() -> request, client_address - handle_timeout() - verify_request(request, client_address) - server_close() - process_request(request, client_address) - shutdown_request(request) - close_request(request) - handle_error() Methods for derived classes: - finish_request(request, client_address) Class variables that may be overridden by derived classes or instances: - timeout - address_family - socket_type - allow_reuse_address Instance variables: - RequestHandlerClass - socket """ timeout = None def __init__(self, server_address, RequestHandlerClass): """Constructor. May be extended, do not override.""" self.server_address = server_address self.RequestHandlerClass = RequestHandlerClass self.__is_shut_down = threading.Event() self.__shutdown_request = False def server_activate(self): """Called by constructor to activate the server. May be overridden. """ pass def serve_forever(self, poll_interval=0.5): """Handle one request at a time until shutdown. Polls for shutdown every poll_interval seconds. Ignores self.timeout. If you need to do periodic tasks, do them in another thread. """ self.__is_shut_down.clear() try: while not self.__shutdown_request: # XXX: Consider using another file descriptor or # connecting to the socket to wake this up instead of # polling. Polling reduces our responsiveness to a # shutdown request and wastes cpu at all other times. r, w, e = _eintr_retry(select.select, [self], [], [], poll_interval) if self in r: self._handle_request_noblock() finally: self.__shutdown_request = False self.__is_shut_down.set() def shutdown(self): """Stops the serve_forever loop. Blocks until the loop has finished. This must be called while serve_forever() is running in another thread, or it will deadlock. """ self.__shutdown_request = True self.__is_shut_down.wait() # The distinction between handling, getting, processing and # finishing a request is fairly arbitrary. Remember: # # - handle_request() is the top-level call. It calls # select, get_request(), verify_request() and process_request() # - get_request() is different for stream or datagram sockets # - process_request() is the place that may fork a new process # or create a new thread to finish the request # - finish_request() instantiates the request handler class; # this constructor will handle the request all by itself def handle_request(self): """Handle one request, possibly blocking. Respects self.timeout. """ # Support people who used socket.settimeout() to escape # handle_request before self.timeout was available. timeout = self.socket.gettimeout() if timeout is None: timeout = self.timeout elif self.timeout is not None: timeout = min(timeout, self.timeout) fd_sets = _eintr_retry(select.select, [self], [], [], timeout) if not fd_sets[0]: self.handle_timeout() return self._handle_request_noblock() def _handle_request_noblock(self): """Handle one request, without blocking. I assume that select.select has returned that the socket is readable before this function was called, so there should be no risk of blocking in get_request(). """ try: request, client_address = self.get_request() except socket.error: return if self.verify_request(request, client_address): try: self.process_request(request, client_address) except: self.handle_error(request, client_address) self.shutdown_request(request) def handle_timeout(self): """Called if no new request arrives within self.timeout. Overridden by ForkingMixIn. """ pass def verify_request(self, request, client_address): """Verify the request. May be overridden. Return True if we should proceed with this request. """ return True def process_request(self, request, client_address): """Call finish_request. Overridden by ForkingMixIn and ThreadingMixIn. """ self.finish_request(request, client_address) self.shutdown_request(request) def server_close(self): """Called to clean-up the server. May be overridden. """ pass def finish_request(self, request, client_address): """Finish one request by instantiating RequestHandlerClass.""" self.RequestHandlerClass(request, client_address, self) def shutdown_request(self, request): """Called to shutdown and close an individual request.""" self.close_request(request) def close_request(self, request): """Called to clean up an individual request.""" pass def handle_error(self, request, client_address): """Handle an error gracefully. May be overridden. The default is to print a traceback and continue. """ print '-'*40 print 'Exception happened during processing of request from', print client_address import traceback traceback.print_exc() # XXX But this goes to stderr! print '-'*40
BaseServer
class TCPServer(BaseServer): """Base class for various socket-based server classes. Defaults to synchronous IP stream (i.e., TCP). Methods for the caller: - __init__(server_address, RequestHandlerClass, bind_and_activate=True) - serve_forever(poll_interval=0.5) - shutdown() - handle_request() # if you don't use serve_forever() - fileno() -> int # for select() Methods that may be overridden: - server_bind() - server_activate() - get_request() -> request, client_address - handle_timeout() - verify_request(request, client_address) - process_request(request, client_address) - shutdown_request(request) - close_request(request) - handle_error() Methods for derived classes: - finish_request(request, client_address) Class variables that may be overridden by derived classes or instances: - timeout - address_family - socket_type - request_queue_size (only for stream sockets) - allow_reuse_address Instance variables: - server_address - RequestHandlerClass - socket """ address_family = socket.AF_INET socket_type = socket.SOCK_STREAM request_queue_size = 5 allow_reuse_address = False def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True): """Constructor. May be extended, do not override.""" BaseServer.__init__(self, server_address, RequestHandlerClass) self.socket = socket.socket(self.address_family, self.socket_type) if bind_and_activate: try: self.server_bind() self.server_activate() except: self.server_close() raise def server_bind(self): """Called by constructor to bind the socket. May be overridden. """ if self.allow_reuse_address: self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind(self.server_address) self.server_address = self.socket.getsockname() def server_activate(self): """Called by constructor to activate the server. May be overridden. """ self.socket.listen(self.request_queue_size) def server_close(self): """Called to clean-up the server. May be overridden. """ self.socket.close() def fileno(self): """Return socket file number. Interface required by select(). """ return self.socket.fileno() def get_request(self): """Get the request and client address from the socket. May be overridden. """ return self.socket.accept() def shutdown_request(self, request): """Called to shutdown and close an individual request.""" try: #explicitly shutdown. socket.close() merely releases #the socket and waits for GC to perform the actual close.  request.shutdown(socket.SHUT_WR) except socket.error: pass #some platforms may raise ENOTCONN here  self.close_request(request) def close_request(self, request): """Called to clean up an individual request.""" request.close()
TCPServer
class ThreadingMixIn: """Mix-in class to handle each request in a new thread.""" # Decides how threads will act upon termination of the # main process daemon_threads = False def process_request_thread(self, request, client_address): """Same as in BaseServer but as a thread. In addition, exception handling is done here. """ try: self.finish_request(request, client_address) self.shutdown_request(request) except: self.handle_error(request, client_address) self.shutdown_request(request) def process_request(self, request, client_address): """Start a new thread to process the request.""" t = threading.Thread(target = self.process_request_thread, args = (request, client_address)) t.daemon = self.daemon_threads t.start()
ThreadingMixIn
class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass
ThreadingTCPServer

RequestHandler相关源码

class BaseRequestHandler: """Base class for request handler classes. This class is instantiated for each request to be handled. The constructor sets the instance variables request, client_address and server, and then calls the handle() method. To implement a specific service, all you need to do is to derive a class which defines a handle() method. The handle() method can find the request as self.request, the client address as self.client_address, and the server (in case it needs access to per-server information) as self.server. Since a separate instance is created for each request, the handle() method can define arbitrary other instance variariables. """ def __init__(self, request, client_address, server): self.request = request self.client_address = client_address self.server = server self.setup() try: self.handle() finally: self.finish() def setup(self): pass def handle(self): pass def finish(self): pass
SocketServer.BaseRequestHandler

实例:

#!/usr/bin/env python # -*- coding:utf-8 -*- import SocketServer class MyServer(SocketServer.BaseRequestHandler): def handle(self): # print self.request,self.client_address,self.server conn = self.request conn.sendall('欢迎致电 10086,请输入1xxx,0转人工服务.') Flag = True while Flag: data = conn.recv(1024) if data == 'exit': Flag = False elif data == '0': conn.sendall('经过可能会被录音.balabala一大推') else: conn.sendall('请从新输入.') if __name__ == '__main__': server = SocketServer.ThreadingTCPServer(('127.0.0.1',8009),MyServer) server.serve_forever()
服务端
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8009) sk = socket.socket() sk.connect(ip_port) sk.settimeout(5) while True: data = sk.recv(1024) print 'receive:',data inp = raw_input('please input:') sk.sendall(inp) if inp == 'exit': break sk.close()
客户端

源码精简:

复制代码
import socket import threading import select def process(request, client_address): print request,client_address conn = request conn.sendall('欢迎致电 10086,请输入1xxx,0转人工服务.') flag = True while flag: data = conn.recv(1024) if data == 'exit': flag = False elif data == '0': conn.sendall('经过可能会被录音.balabala一大推') else: conn.sendall('请从新输入.') sk = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sk.bind(('127.0.0.1',8002)) sk.listen(5) while True: r, w, e = select.select([sk,],[],[],1) print 'looping' if sk in r: print 'get request' request, client_address = sk.accept() t = threading.Thread(target=process, args=(request, client_address)) t.daemon = False t.start() sk.close()
复制代码

如精简代码能够看出,SocketServer的ThreadingTCPServer之因此能够同时处理请求得益于 selectThreading 两个东西,其实本质上就是在服务器端为每个客户端建立一个线程,当前线程用来处理对应客户端的请求,因此,能够支持同时n个客户端连接(长链接)。

ForkingTCPServer

ForkingTCPServer和ThreadingTCPServer的使用和执行流程基本一致,只不过在内部分别为请求者创建 “线程”  和 “进程”。

基本使用:

#!/usr/bin/env python # -*- coding:utf-8 -*- import SocketServer class MyServer(SocketServer.BaseRequestHandler): def handle(self): # print self.request,self.client_address,self.server conn = self.request conn.sendall('欢迎致电 10086,请输入1xxx,0转人工服务.') Flag = True while Flag: data = conn.recv(1024) if data == 'exit': Flag = False elif data == '0': conn.sendall('经过可能会被录音.balabala一大推') else: conn.sendall('请从新输入.') if __name__ == '__main__': server = SocketServer.ForkingTCPServer(('127.0.0.1',8009),MyServer) server.serve_forever()
服务端
#!/usr/bin/env python # -*- coding:utf-8 -*- import socket ip_port = ('127.0.0.1',8009) sk = socket.socket() sk.connect(ip_port) sk.settimeout(5) while True: data = sk.recv(1024) print 'receive:',data inp = raw_input('please input:') sk.sendall(inp) if inp == 'exit': break sk.close()
客户端

以上ForkingTCPServer只是将 ThreadingTCPServer 实例中的代码:

?
1
2
3
server = SocketServer.ThreadingTCPServer(( '127.0.0.1' , 8009 ),MyRequestHandler)
变动为:
server = SocketServer.ForkingTCPServer(( '127.0.0.1' , 8009 ),MyRequestHandler)

SocketServer的ThreadingTCPServer之因此能够同时处理请求得益于 select 和 os.fork 两个东西,其实本质上就是在服务器端为每个客户端建立一个进程,当前新建立的进程用来处理对应客户端的请求,因此,能够支持同时n个客户端连接(长链接)。

源码剖析参考 ThreadingTCPServer

Twisted

Twisted是一个事件驱动的网络框架,其中包含了诸多功能,例如:网络协议、线程、数据库管理、网络操做、电子邮件等。

事件驱动

简而言之,事件驱动分为二个部分:第一,注册事件;第二,触发事件。

自定义事件驱动框架,命名为:“弑君者”:

#!/usr/bin/env python # -*- coding:utf-8 -*- # event_drive.py  event_list = [] def run(): for event in event_list: obj = event() obj.execute() class BaseHandler(object): """ 用户必须继承该类,从而规范全部类的方法(相似于接口的功能) """ def execute(self): raise Exception('you must overwrite execute')
最牛逼的事件驱动框架

程序员使用“弑君者框架”:

#!/usr/bin/env python # -*- coding:utf-8 -*- from source import event_drive class MyHandler(event_drive.BaseHandler): def execute(self): print 'event-drive execute MyHandler' event_drive.event_list.append(MyHandler) event_drive.run()
View Code

如上述代码,事件驱动只不过是框架规定了执行顺序,程序员在使用框架时,能够向原执行顺序中注册“事件”,从而在框架执行时能够出发已注册的“事件”。

基于事件驱动Socket

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
from twisted.internet import protocol
from twisted.internet import reactor
 
class Echo(protocol.Protocol):
     def dataReceived( self , data):
         self .transport.write(data)
 
def main():
     factory = protocol.ServerFactory()
     factory.protocol = Echo
 
     reactor.listenTCP( 8000 ,factory)
     reactor.run()
 
if __name__ = = '__main__' :
     main()

程序执行流程:

  • 运行服务端程序
  • 建立Protocol的派生类Echo
  • 建立ServerFactory对象,并将Echo类封装到其protocol字段中
  • 执行reactor的 listenTCP 方法,内部使用 tcp.Port 建立socket server对象,并将该对象添加到了 reactor的set类型的字段 _read 中
  • 执行reactor的 run 方法,内部执行 while 循环,并经过 select 来监视 _read 中文件描述符是否有变化,循环中...
  • 客户端请求到达
  • 执行reactor的 _doReadOrWrite 方法,其内部经过反射调用 tcp.Port 类的 doRead 方法,内部 accept 客户端链接并建立Server对象实例(用于封装客户端socket信息)和 建立 Echo 对象实例(用于处理请求) ,而后调用 Echo 对象实例的 makeConnection 方法,建立链接。
  • 执行 tcp.Server 类的 doRead 方法,读取数据,
  • 执行 tcp.Server 类的 _dataReceived 方法,若是读取数据内容为空(关闭连接),不然,出发 Echo 的 dataReceived 方法
  • 执行 Echo 的 dataReceived 方法

从源码能够看出,上述实例本质上使用了事件驱动的方法 和 IO多路复用的机制来进行Socket的处理。

#!/usr/bin/env python # -*- coding:utf-8 -*- from twisted.internet import reactor, protocol from twisted.web.client import getPage from twisted.internet import reactor import time class Echo(protocol.Protocol): def dataReceived(self, data): deferred1 = getPage('http://cnblogs.com') deferred1.addCallback(self.printContents) deferred2 = getPage('http://baidu.com') deferred2.addCallback(self.printContents) for i in range(2): time.sleep(1) print 'execute ',i def execute(self,data): self.transport.write(data) def printContents(self,content): print len(content),content[0:100],time.time() def main(): factory = protocol.ServerFactory() factory.protocol = Echo reactor.listenTCP(8000,factory) reactor.run() if __name__ == '__main__': main()
异步IO操做

更多请见:

  https://twistedmatrix.com/trac   http://twistedmatrix.com/documents/current/api/

相关文章
相关标签/搜索