第一章节介绍了单个字符识别模型的训练和使用,实际遇到的验证码可能存在粘连而没法完整的切割成单个字符。针对这种验证码咱们能够采用端到端总体识别的方式来解决,对验证码不作任何处理,总体输入模型进行训练一样也能够得到一个理想模型;与单字符模型训练的差异就是要得到较高识别率模型须要的样本量较大,以前经验值大概10000张以上图片能够得到一个可用识别模型,样本越多模型精度越高,且不容易过拟合。python
关于训练样本的得到,第一章有介绍,能够依据实际图片来选择合适的方式得到训练样本git
本章训练所用验证码以下图所示: bash
第一章介绍的和本节方法的区别,本节验证码识别是总体输入,总体输出;一次输入一次输出。验证码总体输入模型,模型直接输出四字符做为结果,流程以下图 网络
第一章介绍的方法,须要对图片先按照字符个数切分红单个图片,切分出来的每一个小图片在依次输入模型,模型每次输出一个字符,最后经过代码合并成一个总体的过程,流程以下图所示:app
本节的方法不须要对验证码作额外处理,并且识别时只须要调用一次模型便可得到所需输出,识别时间短。任何事物都有两面性,有优势就优缺点,缺点就是训练模型须要的样本量比较多,适合训练样本获取容易的验证码识别,土豪能够不用考虑,直接对接打码平台获取训练样本便可。dom
四字符训练须要修改nets文件夹下的模型文件alexnet.py(修改的地方第一章有介绍)函数
模型 code学习
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
slim = tf.contrib.slim
trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev)
def alexnet_v2_arg_scope(weight_decay=0.0005):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
activation_fn=tf.nn.relu,
biases_initializer=tf.constant_initializer(0.1),
weights_regularizer=slim.l2_regularizer(weight_decay)):
with slim.arg_scope([slim.conv2d], padding='SAME'):
with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc:
return arg_sc
def alexnet_v2(inputs,
num_classes=1000,
is_training=True,
dropout_keep_prob=0.5,
spatial_squeeze=True,
scope='alexnet_v2'):
with tf.variable_scope(scope, 'alexnet_v2', [inputs]) as sc:
end_points_collection = sc.name + '_end_points'
# Collect outputs for conv2d, fully_connected and max_pool2d.
with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],
outputs_collections=[end_points_collection]):
net = slim.conv2d(inputs, 64, [11, 11], 4, padding='VALID',
scope='conv1')
net = slim.max_pool2d(net, [3, 3], 2, scope='pool1')
net = slim.conv2d(net, 192, [5, 5], scope='conv2')
net = slim.max_pool2d(net, [3, 3], 2, scope='pool2')
net = slim.conv2d(net, 384, [3, 3], scope='conv3')
net = slim.conv2d(net, 384, [3, 3], scope='conv4')
net = slim.conv2d(net, 256, [3, 3], scope='conv5')
net = slim.max_pool2d(net, [3, 3], 2, scope='pool5')
# Use conv2d instead of fully_connected layers.
with slim.arg_scope([slim.conv2d],
weights_initializer=trunc_normal(0.005),
biases_initializer=tf.constant_initializer(0.1)):
net = slim.conv2d(net, 4096, [5, 5], padding='VALID',
scope='fc6')
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
scope='dropout6')
net = slim.conv2d(net, 4096, [1, 1], scope='fc7')
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
scope='dropout7')
net0 = slim.conv2d(net, num_classes, [1, 1],
activation_fn=None,
normalizer_fn=None,
biases_initializer=tf.zeros_initializer(),
scope='fc8_0')
net1 = slim.conv2d(net, num_classes, [1, 1],
activation_fn=None,
normalizer_fn=None,
biases_initializer=tf.zeros_initializer(),
scope='fc8_1')
net2 = slim.conv2d(net, num_classes, [1, 1],
activation_fn=None,
normalizer_fn=None,
biases_initializer=tf.zeros_initializer(),
scope='fc8_2')
net3 = slim.conv2d(net, num_classes, [1, 1],
activation_fn=None,
normalizer_fn=None,
biases_initializer=tf.zeros_initializer(),
scope='fc8_3')
# Convert end_points_collection into a end_point dict.
end_points = slim.utils.convert_collection_to_dict(end_points_collection)
if spatial_squeeze:
net0 = tf.squeeze(net0, [1, 2], name='fc8_0/squeezed')
end_points[sc.name + '/fc8_0'] = net0
net1 = tf.squeeze(net1, [1, 2], name='fc8_1/squeezed')
end_points[sc.name + '/fc8_1'] = net1
net2 = tf.squeeze(net2, [1, 2], name='fc8_2/squeezed')
end_points[sc.name + '/fc8_2'] = net2
net3 = tf.squeeze(net3, [1, 2], name='fc8_3/squeezed')
end_points[sc.name + '/fc8_3'] = net3
return net0,net1,net2,net3,end_points
alexnet_v2.default_image_size = 224
复制代码
注意和第一章单子符生成代码的不一样测试
code:优化
import tensorflow as tf
import os
import random
import math
import sys
from PIL import Image
import numpy as np
#验证集数量
_NUM_TEST = 500
#随机种子
_RANDOM_SEED = 0
#验证码最大长度
MAX_CAPTCHA = 4
#训练数据集路径
DATASET_DIR = './train_data/'
#tfrecord文件存放路径
TFRECORD_DIR = './TFrecord/'
#判断tfrecord文件是否存在
def _dataset_exists(dataset_dir):
for split_name in ['train', 'test']:
output_filename = os.path.join(dataset_dir,split_name + '.tfrecords')
if not tf.gfile.Exists(output_filename):
return False
return True
#获取全部验证码图片
def _get_filenames_and_classes(dataset_dir):
photo_filenames = []
for filename in os.listdir(dataset_dir):
#获取文件路径
path = os.path.join(dataset_dir, filename)
photo_filenames.append(path)
return photo_filenames
def int64_feature(values):
if not isinstance(values, (tuple, list)):
values = [values]
return tf.train.Feature(int64_list=tf.train.Int64List(value=values))
def bytes_feature(values):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))
def image_to_tfexample(image_data, label0, label1, label2, label3):
#Abstract base class for protocol messages.
return tf.train.Example(features=tf.train.Features(feature={
'image': bytes_feature(image_data),
'label0': int64_feature(label0),
'label1': int64_feature(label1),
'label2': int64_feature(label2),
'label3': int64_feature(label3),
}))
#字符转成int
def char2pos(c):
if c == '_':
k = 62
return k
k = ord(c) - 48
if k > 9:
k = ord(c) - 55
if k > 35:
k = ord(c) - 61
if k > 61:
raise ValueError('No Map')
return k
def char2pos1(c):
if c=='_':
k=36
return k
k = ord(c)-48
if k>9:
k = ord(c) - 55
if k>35:
k = ord(c) - (61+26)
if k>36:
raise ValueError('No Map')
return k
#把数据转为TFRecord格式
def _convert_dataset(split_name, filenames, dataset_dir):
assert split_name in ['train', 'test']
with tf.Session() as sess:
#定义tfrecord文件的路径+名字
output_filename = os.path.join(TFRECORD_DIR,split_name + '.tfrecords')
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
for i,filename in enumerate(filenames):
try:
sys.stdout.write('\r>> Converting image %d/%d' % (i+1, len(filenames)))
sys.stdout.flush()
#读取图片
image_data = Image.open(filename)
#根据模型的结构resize
image_data = image_data.resize((224, 224))
#灰度化
image_data = np.array(image_data.convert('L'))
#将图片转化为bytes
image_data = image_data.tobytes()
#获取label
labels = filename.split('/')[-1][0:4]
num_labels = []
for j in range(4):
num_labels.append(int(char2pos1(labels[j])))
example = image_to_tfexample(image_data, num_labels[0], num_labels[1], num_labels[2], num_labels[3])
tfrecord_writer.write(example.SerializeToString())
except IOError as e:
print('Could not read:',filename)
print('Error:',e)
print('Skip it\n')
sys.stdout.write('\n')
sys.stdout.flush()
#判断tfrecord文件是否存在
if _dataset_exists(TFRECORD_DIR):
print('tfcecord文件已存在')
else:
#得到全部图片
photo_filenames = _get_filenames_and_classes(DATASET_DIR)
#把数据切分为训练集和测试集,并打乱
random.seed(_RANDOM_SEED)
random.shuffle(photo_filenames)
training_filenames = photo_filenames[_NUM_TEST:]
testing_filenames = photo_filenames[:_NUM_TEST]
#数据转换
_convert_dataset('train', training_filenames, DATASET_DIR)
_convert_dataset('test', testing_filenames, DATASET_DIR)
print('生成tfcecord文件')
复制代码
也是在第一章单字符识别训练代码的基础上增长了三个通道,留意代码不一样的地方,就能够依据本身的字符个数修改代码实现指定字符个数验证码识别模型
训练code
#coding=GB2312
import os
import tensorflow as tf
from PIL import Image
from nets import nets_factory
import numpy as np
# 不一样字符数量
CHAR_SET_LEN = 36
# 图片高度
IMAGE_HEIGHT = 60
# 图片宽度
IMAGE_WIDTH = 160
# 批次
BATCH_SIZE = 25
# tfrecord文件存放路径
TFRECORD_FILE = "./TFrecord/train.tfrecords"
# placeholder
x = tf.placeholder(tf.float32, [None, 224, 224])
y0 = tf.placeholder(tf.float32, [None])
y1 = tf.placeholder(tf.float32, [None])
y2 = tf.placeholder(tf.float32, [None])
y3 = tf.placeholder(tf.float32, [None])
# 学习率
lr = tf.Variable(0.003, dtype=tf.float32)
# 从tfrecord读出数据
def read_and_decode(filename):
# 根据文件名生成一个队列
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
# 返回文件名和文件
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'image' : tf.FixedLenFeature([], tf.string),
'label0': tf.FixedLenFeature([], tf.int64),
'label1': tf.FixedLenFeature([], tf.int64),
'label2': tf.FixedLenFeature([], tf.int64),
'label3': tf.FixedLenFeature([], tf.int64),
})
# 获取图片数据
image = tf.decode_raw(features['image'], tf.uint8)
# tf.train.shuffle_batch必须肯定shape
image = tf.reshape(image, [224, 224])
# 图片预处理
image = tf.cast(image, tf.float32) / 255.0
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0)
# 获取label
label0 = tf.cast(features['label0'], tf.int32)
label1 = tf.cast(features['label1'], tf.int32)
label2 = tf.cast(features['label2'], tf.int32)
label3 = tf.cast(features['label3'], tf.int32)
return image, label0, label1, label2, label3
# 获取图片数据和标签
image, label0, label1, label2, label3 = read_and_decode(TFRECORD_FILE)
#使用shuffle_batch能够随机打乱
image_batch, label_batch0, label_batch1, label_batch2, label_batch3 = tf.train.shuffle_batch(
[image, label0, label1, label2, label3], batch_size = BATCH_SIZE,
capacity = 50000, min_after_dequeue=10000, num_threads=1)
#定义网络结构
train_network_fn = nets_factory.get_network_fn(
'alexnet_v2',
num_classes=CHAR_SET_LEN,
weight_decay=0.0005,
is_training=True)
with tf.Session() as sess:
# inputs: a tensor of size [batch_size, height, width, channels]
X = tf.reshape(x, [BATCH_SIZE, 224, 224, 1])
# 数据输入网络获得输出值
logits0,logits1,logits2,logits3,end_points = train_network_fn(X)
# 把标签转成one_hot的形式
one_hot_labels0 = tf.one_hot(indices=tf.cast(y0, tf.int32), depth=CHAR_SET_LEN)
one_hot_labels1 = tf.one_hot(indices=tf.cast(y1, tf.int32), depth=CHAR_SET_LEN)
one_hot_labels2 = tf.one_hot(indices=tf.cast(y2, tf.int32), depth=CHAR_SET_LEN)
one_hot_labels3 = tf.one_hot(indices=tf.cast(y3, tf.int32), depth=CHAR_SET_LEN)
# 计算loss
loss0 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits0,labels=one_hot_labels0))
loss1 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits1,labels=one_hot_labels1))
loss2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits2,labels=one_hot_labels2))
loss3 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits3,labels=one_hot_labels3))
# 计算总的loss
total_loss = (loss0+loss1+loss2+loss3)/4.0
# 优化total_loss
optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(total_loss)
# 计算准确率
correct_prediction0 = tf.equal(tf.argmax(one_hot_labels0,1),tf.argmax(logits0,1))
accuracy0 = tf.reduce_mean(tf.cast(correct_prediction0,tf.float32))
correct_prediction1 = tf.equal(tf.argmax(one_hot_labels1,1),tf.argmax(logits1,1))
accuracy1 = tf.reduce_mean(tf.cast(correct_prediction1,tf.float32))
correct_prediction2 = tf.equal(tf.argmax(one_hot_labels2,1),tf.argmax(logits2,1))
accuracy2 = tf.reduce_mean(tf.cast(correct_prediction2,tf.float32))
correct_prediction3 = tf.equal(tf.argmax(one_hot_labels3,1),tf.argmax(logits3,1))
accuracy3 = tf.reduce_mean(tf.cast(correct_prediction3,tf.float32))
# 用于保存模型
saver = tf.train.Saver()
# 初始化
sess.run(tf.global_variables_initializer())
# 建立一个协调器,管理线程
coord = tf.train.Coordinator()
# 启动QueueRunner, 此时文件名队列已经进队
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for i in range(40001):
# 获取一个批次的数据和标签
b_image, b_label0, b_label1 ,b_label2 ,b_label3 = sess.run([image_batch, label_batch0, label_batch1, label_batch2, label_batch3])
# 优化模型
sess.run(optimizer, feed_dict={x: b_image, y0:b_label0, y1: b_label1, y2: b_label2, y3: b_label3})
# 每迭代20次计算一次loss和准确率
if i % 20 == 0:
# 每迭代2000次下降一次学习率
if i%2000 == 0:
sess.run(tf.assign(lr, lr/3))
acc0,acc1,acc2,acc3,loss_ = sess.run([accuracy0,accuracy1,accuracy2,accuracy3,total_loss],feed_dict={x: b_image,
y0: b_label0,
y1: b_label1,
y2: b_label2,
y3: b_label3})
learning_rate = sess.run(lr)
print ("Iter:%d Loss:%.3f Accuracy:%.2f,%.2f,%.2f,%.2f Learning_rate:%.4f" % (i,loss_,acc0,acc1,acc2,acc3,learning_rate))
# 保存模型
if acc0 > 0.96 and acc1 > 0.96 and acc2 > 0.96 and acc3 > 0.96:
saver.save(sess, "./models/crack_captcha.model", global_step=i)
break
if i==40000:
saver.save(sess, "./models/crack_captcha.model", global_step=i)
break
# 通知其余线程关闭
coord.request_stop()
# 其余全部线程关闭以后,这一函数才能返回
coord.join(threads)
复制代码
测试模型code
import os
import tensorflow as tf
from PIL import Image
from nets import nets_factory
import numpy as np
import matplotlib.pyplot as plt
# 不一样字符数量
CHAR_SET_LEN = 36
# 图片高度
IMAGE_HEIGHT = 60
# 图片宽度
IMAGE_WIDTH = 160
# 批次
BATCH_SIZE = 1
# tfrecord文件存放路径
TFRECORD_FILE = "./TFrecord/test.tfrecords"
# placeholder
x = tf.placeholder(tf.float32, [None, 224, 224])
# 从tfrecord读出数据
def read_and_decode(filename):
# 根据文件名生成一个队列
filename_queue = tf.train.string_input_producer([filename])
reader = tf.TFRecordReader()
# 返回文件名和文件
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={
'image' : tf.FixedLenFeature([], tf.string),
'label0': tf.FixedLenFeature([], tf.int64),
'label1': tf.FixedLenFeature([], tf.int64),
'label2': tf.FixedLenFeature([], tf.int64),
'label3': tf.FixedLenFeature([], tf.int64),
})
# 获取图片数据
image = tf.decode_raw(features['image'], tf.uint8)
# 没有通过预处理的灰度图
image_raw = tf.reshape(image, [224, 224])
# tf.train.shuffle_batch必须肯定shape
image = tf.reshape(image, [224, 224])
# 图片预处理
image = tf.cast(image, tf.float32) / 255.0
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0)
# 获取label
label0 = tf.cast(features['label0'], tf.int32)
label1 = tf.cast(features['label1'], tf.int32)
label2 = tf.cast(features['label2'], tf.int32)
label3 = tf.cast(features['label3'], tf.int32)
return image, image_raw, label0, label1, label2, label3
# 获取图片数据和标签
image, image_raw, label0, label1, label2, label3 = read_and_decode(TFRECORD_FILE)
#使用shuffle_batch能够随机打乱
image_batch, image_raw_batch, label_batch0, label_batch1, label_batch2, label_batch3 = tf.train.shuffle_batch(
[image, image_raw, label0, label1, label2, label3], batch_size = BATCH_SIZE,
capacity = 50000, min_after_dequeue=10000, num_threads=1)
#定义网络结构
train_network_fn = nets_factory.get_network_fn(
'alexnet_v2',
num_classes=CHAR_SET_LEN,
weight_decay=0.0005,
is_training=False)
with tf.Session() as sess:
# inputs: a tensor of size [batch_size, height, width, channels]
X = tf.reshape(x, [BATCH_SIZE, 224, 224, 1])
# 数据输入网络获得输出值
logits0,logits1,logits2,logits3,end_points = train_network_fn(X)
# 预测值
predict0 = tf.reshape(logits0, [-1, CHAR_SET_LEN])
predict0 = tf.argmax(predict0, 1)
predict1 = tf.reshape(logits1, [-1, CHAR_SET_LEN])
predict1 = tf.argmax(predict1, 1)
predict2 = tf.reshape(logits2, [-1, CHAR_SET_LEN])
predict2 = tf.argmax(predict2, 1)
predict3 = tf.reshape(logits3, [-1, CHAR_SET_LEN])
predict3 = tf.argmax(predict3, 1)
# 初始化
sess.run(tf.global_variables_initializer())
# 载入训练好的模型
saver = tf.train.Saver()
saver.restore(sess,'./models/crack_captcha.model-21560')
# 建立一个协调器,管理线程
coord = tf.train.Coordinator()
# 启动QueueRunner, 此时文件名队列已经进队
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for i in range(20):
# 获取一个批次的数据和标签
b_image, b_image_raw, b_label0, b_label1 ,b_label2 ,b_label3 = sess.run([image_batch,
image_raw_batch,
label_batch0,
label_batch1,
label_batch2,
label_batch3])
# 显示图片
img=Image.fromarray(b_image_raw[0],'L')
plt.imshow(img)
plt.axis('off')
plt.show()
# 打印标签
print('label:',b_label0, b_label1 ,b_label2 ,b_label3)
# 预测
label0,label1,label2,label3 = sess.run([predict0,predict1,predict2,predict3], feed_dict={x: b_image})
# 打印预测值
print('predict:',label0,label1,label2,label3)
# 通知其余线程关闭
coord.request_stop()
# 其余全部线程关闭以后,这一函数才能返回
coord.join(threads)
复制代码
models文件夹中存放最后训练好的模型
nets文件中为模型文件
train_data为打码以后的标签图片
TFrecord文件存放由TFrecord_Convert.py代码从train_data中转换以后的TFrecord格式数据
Tensorflow_train.py为模型训练代码
Tensorflow_test.py为测试模型用代码文件
本章所用训练样本12000样本,实际测试在测试集模型识别率90%以上
本章代码百度网盘地址:连接:pan.baidu.com/s/1yy-gLFN9… 提取码:iwbm
因为网速问题数据集和模型文件未上传,有须要训练数据集的能够加QQ:1071830794进行获取,或者发邮件,我看到邮件会把数据集的TFrecord格式数据以邮件方式发给你们
本章介绍了一种验证码总体识别方法,下一章节会写关于不定长字符验证码模型训练识别方法。
文章中有错误和不足地方欢迎你们指正,欢迎你们一块儿学习和成长