梯度下降、牛顿法和拟牛顿法

1. 梯度下降法 梯度下降法用来求解目标函数的极值。这个极值是给定模型给定数据之后在参数空间中搜索找到的。迭代过程为: 可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步长控制参数alpha。梯度下降法通常用一个三维图来展示,迭代过程就好像在不断地下坡,最终到达坡底。为了更形象地理解,也为了和牛顿法比较,这里我用一个二维图来表示: 懒得画图了直接用这个展示一下。
相关文章
相关标签/搜索