第八课: - 从Microsoft SQL数据库读取

第 8 课

如何从Microsoft SQL数据库中提取数据html

In [1]:
# Import libraries
import pandas as pd import sys from sqlalchemy import create_engine, MetaData, Table, select, engine 
In [2]:
print('Python version ' + sys.version) print('Pandas version ' + pd.__version__) 
Python version 3.5.1 |Anaconda custom (64-bit)| (default, Feb 16 2016, 09:49:46) [MSC v.1900 64 bit (AMD64)]
Pandas version 0.20.1 

版本1

在本节中,咱们使用sqlalchemy库从sql数据库中获取数据。确保使用您本身的ServerNameDatabaseTableNamepython

In [3]:
# Parameters
TableName = "data" DB = { 'drivername': 'mssql+pyodbc', 'servername': 'DAVID-THINK', #'port': '5432', #'username': 'lynn', #'password': '', 'database': 'BizIntel', 'driver': 'SQL Server Native Client 11.0', 'trusted_connection': 'yes', 'legacy_schema_aliasing': False } # Create the connection engine = create_engine(DB['drivername'] + '://' + DB['servername'] + '/' + DB['database'] + '?' + 'driver=' + DB['driver'] + ';' + 'trusted_connection=' + DB['trusted_connection'], legacy_schema_aliasing=DB['legacy_schema_aliasing']) conn = engine.connect() # Required for querying tables metadata = MetaData(conn) # Table to query tbl = Table(TableName, metadata, autoload=True, schema="dbo") #tbl.create(checkfirst=True) # Select all sql = tbl.select() # run sql code result = conn.execute(sql) # Insert to a dataframe df = pd.DataFrame(data=list(result), columns=result.keys()) # Close connection conn.close() print('Done') 
 
Done
 选择数据帧中的内容。
In [4]:
df.head() 
Out[4]:
  Date Symbol Volume
0 2013-01-01 A 0.00
1 2013-01-02 A 200.00
2 2013-01-03 A 1200.00
3 2013-01-04 A 1001.00
4 2013-01-05 A 1300.00
In [5]:
df.dtypes 
Out[5]:
Date      datetime64[ns]
Symbol            object
Volume            object
dtype: object
 

转换为特定的数据类型。下面的代码必须修改为符合你的表。sql

 

版本 2

In [6]:
import pandas.io.sql import pyodbc 
In [7]:
# Parameters
server = 'DAVID-THINK' db = 'BizIntel' # Create the connection conn = pyodbc.connect('DRIVER={SQL Server};SERVER=' + DB['servername'] + ';DATABASE=' + DB['database'] + ';Trusted_Connection=yes') # query db sql = """ SELECT top 5 * FROM data """ df = pandas.io.sql.read_sql(sql, conn) df.head() 
Out[7]:
  Date Symbol Volume
0 2013-01-01 A 0.0
1 2013-01-02 A 200.0
2 2013-01-03 A 1200.0
3 2013-01-04 A 1001.0
4 2013-01-05 A 1300.0
 

版本 3

In [8]:
from sqlalchemy import create_engine 
In [9]:
# Parameters
ServerName = "DAVID-THINK" Database = "BizIntel" Driver = "driver=SQL Server Native Client 11.0" # Create the connection engine = create_engine('mssql+pyodbc://' + ServerName + '/' + Database + "?" + Driver) df = pd.read_sql_query("SELECT top 5 * FROM data", engine) df 
Out[9]:
  Date Symbol Volume
0 2013-01-01 A 0.0
1 2013-01-02 A 200.0
2 2013-01-03 A 1200.0
3 2013-01-04 A 1001.0
4 2013-01-05 A 1300.0
 

This tutorial was rewrited by CDS.数据库

相关文章
相关标签/搜索