从横切到纵切,架构模式CQRS,提升系统进化能力

曾几什么时候,你是否疑惑于VO、PO、DTO、BO、POJO、Entity、MODEL的区别?html

你是否有过疑问,为何Java里有这么多的以O为名称结尾的对象?!web

你是否也厌倦了编写从这个O对象到那个O对象之间的转换代码?!数据库

你有没有想过,这一切的根源在哪里呢?有没有办法解决这个问题呢?markdown

本文试图给你答案!数据结构

分层架构的「原罪」

架构风格:万金油CS与分层一文中提到,分层架构是个万金油架构,当你没法肯定该使用哪一种架构风格的时候,那么能够先使用分层架构。而实际上确实是这样,大部分的应用都采用了分层架构,特别是web应用。架构

以最简单的三层架构来讲:异步

  • 展现层:展现数据给用户
  • 逻辑层:处理业务逻辑
  • 持久层:持久化数据

每一层都负责各自的任务、职责单一,开发也就相对简单。每一层相对独立,因此都可以独立进化,这是分层架构所宣称的优点!也是其「原罪」!oop

分层架构虽然将系统按层进行划分,可是层与层之间仍是须要进行交互的。交互就须要有接口或协议以及传输的数据。性能

对于外部调用,咱们可使用TCP、HTTP、RPC、WebService等方式来进行通讯;而对于内部交互来讲,咱们能够直接使用方法调用,使用接口来进行解耦。优化

可是传输的数据结构该如何定呢?

  • 第一种方式是直接使用基础数据结构,好比Map?这有几个问题:
  • 没有代码提示,包括IDE层面的提示以及业务层面的字段提示,手误的概率较大。将编译期的错误延后到了运行期,下降了开发效率
  • 没有较完备的基础设施,例如基于注解的字段校验
  • 性能相对对象会差一点
  • 第二种方式是使用一个对象进行传递,例如ActiveRecord或者直接使用Model。可是这会使各层强耦合,使得分层架构的优点消失。因为每层的进化速度不一样:持久层相对比较稳定;逻辑层可能须要根据业务逻辑的不一样而进行调整,例如打折策略;而展现层可能须要过一段时间调整,避免审美疲劳。其中一层对传输对象的调整均可能致使其它层跟着一块儿修改。
  • 第三种方式就是上面说的使用各类传输对象:各层之间的数据传输使用独立的传输对象,使得各层松耦合。可是增长了各类传输对象以及转换代码。同时转换也消耗了部分性能。

各层的独立进化,致使了交互的额外操做!这就是分层架构的「原罪」!也是须要这么多传输对象的其中一个缘由!

而另一个缘由是表现力差别

再谈表现力

领域设计:聚合与聚合根聊到了表现力问题,「数据设计」的表现力要弱于「对象设计」!相对应的,其实「数据展示」的表现力也是弱于「对象设计」的!

咱们仍是以订单来举例!假设我下单购买了多个商品,也就是说一个订单包含了多个明细。那么订单与订单明细的这层关系在「持久层」是经过主键来表现的:

从横切到纵切,架构模式CQRS,提升系统进化能力

订单明细包含了订单的主键,表示哪些订单明细是属于哪一个订单的。

而这层关系在「逻辑层」是经过对象引用来表现的:

从横切到纵切,架构模式CQRS,提升系统进化能力

订单对象中持有了指向订单明细列表的引用。

而到了「展现层」,订单和订单详情之间的关系就彻底靠展现方式来表现了:

从横切到纵切,架构模式CQRS,提升系统进化能力

若是你不了解业务,光看代码,是看不出订单与订单明细之间的关系的。上面只是纯粹的展现了订单明细在订单信息的下面。

也就是说,当咱们访问页面的时候,请求从「持久层」将扁平的数据查询到了「逻辑层」,组装成告终构化的对象,最后被传递到了「展示层」,又被拍扁了展现在咱们面前

因为每层表现形式的不一样,亦致使了须要数据传输对象。

从横切到纵切

既然横向封层不可避免的须要数据传输对象来解耦各层之间的关系,那咱们是否不使用横向封层,而使用纵向切分呢?这就是CQRS架构模式!

CQRS经过对系统进行纵向切分:将「数据读」和「数据写」分离开,使得数据读写独立进化,来解决数据显示复杂性问题

CQRS架构以下:

从横切到纵切,架构模式CQRS,提升系统进化能力

流程以下:

  • 客户端构建命令对象CommandModel发送给服务端
  • 服务端经过命令总线CommandBus接收到命令,委托给对应的CommandHandler去处理
  • CommandHandler处理完业务,将此命令经过Repository进行持久化(不必定是DB,下面会具体说)
  • 同时会构建一个对应的事件Event,添加到事件总线EventBus中(该事件能够是同步事件、也能够是异步事件)
  • 对应的EventHandler会对该事件进行处理,好比处理成便于展现的模型,存储到ReadDB中
  • 客户端能够对服务端发送查询,服务端直接从ReadDB中获取数据,构建QueryModel返回

这又什么优点呢?

  • 首先,如今只须要CommandModel和QueryModel两个数据传输对象,再也不须要那么多的中间传输对象了。也就是说,省略了这部分的代码和性能损耗。
  • 其次,读写分离,能够对读写进行专门的优化。
  • 最后,就是能够事件溯源EventSourcing。这个咱们来详细说一下。

咱们以订单保存和展现流程来详细的看一下CQRS的优点!

对于普通分层架构来讲,在保存订单时须要一个DTO用于存储相关信息,而后转成多个对应的Model来进行持久化;而查询订单的时候,你须要查询出多个Model,而后组装成另外一个DTO来存储查询的信息,由于展现的时候可能要展现更多的信息,好比买家和卖家相关信息。

同时因为数据都存储在数据库中,且表结构与Model是对应的,你能作的优化就是数据库相关的优化手段。

而在CQRS中,数据库被分红了读库和写库。那存在读库中的数据结构就能够彻底按照展现逻辑来优化,好比:我能够有一张订单展现表,表中包含了买家信息和卖家信息。在展现时,直接查询这张表就能够了,不须要和用户表进行关联查询,提升了数据读性能。

而对于数据持久化来讲,就不须要考虑数据展现了,只要提升持久化性能就能够了。例如不使用数据库,而使用顺序写入的文件方式。同时也不必定要存储数据自己,转而存储事件,就能够实现事件重演,这就是事件溯源。

事件溯源

领域设计:Entity与VO一文中,提到了「状态」!

通常咱们处理状态都是直接去修改它,像下面这样:

从横切到纵切,架构模式CQRS,提升系统进化能力

那么请问,这个开关刚才经历了什么?!这是典型的ABA问题,即你只知道这个开关目前的状态,可是它曾经有没有开过或关过,你就无从得知了。

咱们对数据的处理也是这样,你只知道当前存在数据库中的数据是什么,而它曾经被修改过没有?被修改为过什么,你无从知晓。

由于咱们存的只是「即时状态」,即「快照」!

事件溯源存储的不是数据「快照」,而是「事件自己」!即它记录了全部对该数据的事件。

若是你了解Redis的持久化方案,你对事件溯源就必定不会感到陌生。Redis有两种持久化方式RDB方式和AOF方式:

  • RDB:在指定的时间间隔内,执行指定次数的写操做,则会将内存中的数据写入到磁盘中。对当前数据快照进行持久化
  • AOF:将指令追加到文件末尾。经过指令重演来恢复数据

咱们通常的持久化方式实际对应的就是Redis的RDB方式,而事件溯源就是AOF方式。

回到上图,在CQRS中,WriteDB能够经过类AOF的方式来存储命令,也就是事件溯源。当须要对ReadDB中的数据进行恢复操做时,能够经过命令重演的方式来恢复。

不过你应该发现问题了,命令重演的方式性能上有问题。因此咱们能够参考Redis,使用快照+事件溯源的方式来存储。即WriteDB中存储事件,额外再定时对数据进行快照备份。恢复数据时先经过快照备份恢复,再从指定位置进行命令重演,来提升性能。

强一致性or最终一致性

读写分离后,致使的一个问题就是读写一致性。在原来的分层架构中,数据写入后再读取,是能够当即读取到写入的数据的(事务保障)。

可是读写分离后,读到的数据不必定是写入的最新数据。通常状况下,这个问题并不大。由于实际上你读的基本上都是历史数据!为何这么说呢?由于你无法保证数据在展示到你面前的过程当中,没有新的写入。除非展现是基于推送机制的。

可是对于特殊状况下,可能不能容忍这样的状况。有几种解决方案:

  • 临时性的显示先前提交给命令模型的参数
  • 在页面展现查询模型的时间
  • 使用相似Comet这样的长连接的方式或者事件模式来监听数据

参考资料

相关文章
相关标签/搜索