【原创】大叔经验分享(2)为何hive在大表上加条件后执行limit很慢

问题重现java

select id from big_table where name = 'sdlkfjalksdjfla' limit 100;sql

首先看执行计划:express

hive> explain select * from big_table where name = 'sdlkfjalksdjfla' limit 100;apache

OKapp

STAGE DEPENDENCIES:oop

  Stage-0 is a root stagefetch

 

STAGE PLANS:ui

  Stage: Stage-0.net

    Fetch Operatororm

      limit: 100

      Processor Tree:

        TableScan

          alias: big_table 

          Statistics: Num rows: 7497189457 Data size: 1499437891589 Basic stats: COMPLETE Column stats: NONE

          Filter Operator

            predicate: (name = 'sdlkfjalksdjfla') (type: boolean)

            Statistics: Num rows: 3748594728 Data size: 749718945694 Basic stats: COMPLETE Column stats: NONE

            Select Operator

              expressions: id (type: string)

              outputColumnNames: _col0

              Statistics: Num rows: 3748594728 Data size: 749718945694 Basic stats: COMPLETE Column stats: NONE

              Limit

                Number of rows: 100

                Statistics: Num rows: 100 Data size: 20000 Basic stats: COMPLETE Column stats: NONE

                ListSink

 

Time taken: 0.668 seconds, Fetched: 23 row(s)

可见只有一个stage,即Fetch Operator,再看执行过程:

   java.lang.Thread.State: RUNNABLE

        at sun.nio.ch.EPollArrayWrapper.epollWait(Native Method)

        at sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:269)

        at sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:79)

        at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:86)

        - locked <0x00000006c1e00cd8> (a sun.nio.ch.Util$2)

        - locked <0x00000006c1e00cc8> (a java.util.Collections$UnmodifiableSet)

        - locked <0x00000006c1e00aa0> (a sun.nio.ch.EPollSelectorImpl)

        at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:97)

        at org.apache.hadoop.net.SocketIOWithTimeout$SelectorPool.select(SocketIOWithTimeout.java:335)

        at org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:157)

        at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:161)

        at org.apache.hadoop.hdfs.protocol.datatransfer.PacketReceiver.readChannelFully(PacketReceiver.java:258)

        at org.apache.hadoop.hdfs.protocol.datatransfer.PacketReceiver.doReadFully(PacketReceiver.java:209)

        at org.apache.hadoop.hdfs.protocol.datatransfer.PacketReceiver.doRead(PacketReceiver.java:171)

        at org.apache.hadoop.hdfs.protocol.datatransfer.PacketReceiver.receiveNextPacket(PacketReceiver.java:102)

        at org.apache.hadoop.hdfs.RemoteBlockReader2.readNextPacket(RemoteBlockReader2.java:186)

        at org.apache.hadoop.hdfs.RemoteBlockReader2.read(RemoteBlockReader2.java:146)

        - locked <0x000000076b9bccb0> (a org.apache.hadoop.hdfs.RemoteBlockReader2)

        at org.apache.hadoop.hdfs.BlockReaderUtil.readAll(BlockReaderUtil.java:32)

        at org.apache.hadoop.hdfs.RemoteBlockReader2.readAll(RemoteBlockReader2.java:363)

        at org.apache.hadoop.hdfs.DFSInputStream.actualGetFromOneDataNode(DFSInputStream.java:1072)

        at org.apache.hadoop.hdfs.DFSInputStream.fetchBlockByteRange(DFSInputStream.java:1000)

        at org.apache.hadoop.hdfs.DFSInputStream.read(DFSInputStream.java:1333)

        at org.apache.hadoop.fs.FSInputStream.readFully(FSInputStream.java:78)

        at org.apache.hadoop.fs.FSDataInputStream.readFully(FSDataInputStream.java:107)

        at org.apache.orc.impl.RecordReaderUtils$DefaultDataReader.readStripeFooter(RecordReaderUtils.java:166)

        at org.apache.orc.impl.RecordReaderImpl.readStripeFooter(RecordReaderImpl.java:239)

        at org.apache.orc.impl.RecordReaderImpl.beginReadStripe(RecordReaderImpl.java:858)

        at org.apache.orc.impl.RecordReaderImpl.readStripe(RecordReaderImpl.java:829)

        at org.apache.orc.impl.RecordReaderImpl.advanceStripe(RecordReaderImpl.java:986)

        at org.apache.orc.impl.RecordReaderImpl.advanceToNextRow(RecordReaderImpl.java:1021)

        at org.apache.orc.impl.RecordReaderImpl.nextBatch(RecordReaderImpl.java:1057)

        at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.ensureBatch(RecordReaderImpl.java:77)

        at org.apache.hadoop.hive.ql.io.orc.RecordReaderImpl.hasNext(RecordReaderImpl.java:89)

        at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$OrcRecordReader.next(OrcInputFormat.java:231)

        at org.apache.hadoop.hive.ql.io.orc.OrcInputFormat$OrcRecordReader.next(OrcInputFormat.java:206)

        at org.apache.hadoop.hive.ql.exec.FetchOperator.getNextRow(FetchOperator.java:488)

        at org.apache.hadoop.hive.ql.exec.FetchOperator.pushRow(FetchOperator.java:428)

        at org.apache.hadoop.hive.ql.exec.FetchTask.fetch(FetchTask.java:146)

        at org.apache.hadoop.hive.ql.Driver.getResults(Driver.java:2098)

        at org.apache.hadoop.hive.cli.CliDriver.processLocalCmd(CliDriver.java:252)

        at org.apache.hadoop.hive.cli.CliDriver.processCmd(CliDriver.java:183)

        at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:399)

        at org.apache.hadoop.hive.cli.CliDriver.executeDriver(CliDriver.java:776)

        at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:714)

        at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:641)

        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)

        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

        at java.lang.reflect.Method.invoke(Method.java:497)

        at org.apache.hadoop.util.RunJar.run(RunJar.java:221)

        at org.apache.hadoop.util.RunJar.main(RunJar.java:136)

可见并无提交远程job而是在本地直接作table scan,若是是在一个大表上加复杂查询条件再作limit就会很慢,由于极有可能须要全表扫描以后才能收集到所需结果(limit条数),这也是为何对大表不加条件直接limit反而很快的缘由。

若是想修改这种行为,须要修改以下配置:

hive.fetch.task.conversion

Some select queries can be converted to a single FETCH task, minimizing latency. Currently the query should be single sourced not having any subquery and should not have any aggregations or distincts (which incur RS – ReduceSinkOperator, requiring a MapReduce task), lateral views and joins.

Supported values are none, minimal and more.
0. none: Disable hive.fetch.task.conversion
1. minimal: SELECT *, FILTER on partition columns (WHERE and HAVING clauses), LIMIT only
2. more: SELECT, FILTER, LIMIT only (including TABLESAMPLE, virtual columns)

这个配置会尝试将query转换为一个fetch任务;

默认为more,将其改成none再执行上边的sql,就会提交到yarn上执行

set hive.fetch.task.conversion=none;

 相关的配置还有一个

hive.fetch.task.conversion.threshold

Input threshold (in bytes) for applying hive.fetch.task.conversion. If target table is native, input length is calculated by summation of file lengths. If it's not native, the storage handler for the table can optionally implement the org.apache.hadoop.hive.ql.metadata.InputEstimator interface. A negative threshold means hive.fetch.task.conversion is applied without any input length threshold.

默认为1073741824 (1 GB)

相关文章
相关标签/搜索
本站公众号
   欢迎关注本站公众号,获取更多信息